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Abstract

Linear Indexed Grammar (LIG) and Head
Grammar (HG) are derivationally equivalent:
not only do they generate the same string lan-
guages, each pair of equivalent grammars gen-
erates each string in the same number of ways.
Beyond that, I also prove that any composi-
tional interpretation for a grammar in one for-
malism can be transformed into a composi-
tional interpretation of the corresponding gram-
mar in the other formalism such that the same
strings are assigned the same meanings. Al-
though this paper focuses on these two for-
malisms, it serves as an example for how to
compare formalisms beyond the string lan-
guages they generate.

1 Introduction

When considering different ways to compare gram-
mar formalisms, weak generative capacity, or the
string languages generated, is one common point of
comparison. For example, Vijay-Shanker and Weir
(1994) proved that four mildly context-sensitive
grammar formalisms generate the same set of string
languages. Of those four, this paper will examine
two in detail: Linear Indexed Grammars (LIG) and
Head Grammars (HG).

Though generating the correct set of strings is im-
portant, linguists use grammars to provide analyses
of languages. They may assign internal structure
to strings to explain how the subcomponents of a
string relate to the whole – compositionality – or
how a string may be associated with more than one
meaning – ambiguity.

Thus, it is no surprise that linguists use notions
beyond weak generative capacity to compare for-
malisms, such as comparing tree structures asso-
ciated with grammars (e.g. Bresnan et al., 1982;
Frank and Hunter, 2021). However, comparison
across tree structures is not infallible. While some
formalisms like Tree Adjoining Grammars directly
derive tree structures, others, such as HG, only

derive strings (or pairs thereof). The only notion
of structure present in HG and string-generating
formalisms are derivation structures, which record
which rules were used to construct the string and
how those rules interact. Though grammar for-
malisms vary wildly in how derivations are struc-
tured, there are still ways to compare derivations
across formalisms.

For example, we might count the number of
derivations assigned to a each string, so that a two-
way ambiguous string in a grammar is assigned
two different derivations. The translation given in
Vijay-Shanker and Weir (1994) does not preserve
the number of derivations per string. To see this,
consider an extremely simple LIG, which has a
single rule S[] → a, and a single derivation.

S[]

a
Following their translation, the corresponding HG
has infinitely many derivations:1

S

ϵ↑a

S

(S,S,ϵ)

ϵ↑ϵ

S

ϵ↑a

W

S

(S,S,ϵ)

ϵ↑ϵ

S

(S,S,ϵ)

ϵ↑ϵ

S

ϵ↑a

W

W

. . .

This problem arises more generally for any pair
of weakly equivalent grammars given by their trans-
lation: despite being weakly equivalent, the HG
will have infinitely many derivations. In fact, no
matter how many derivations generate a string in
the LIG, there will be infinitely many derivations
that generate that string in the HG.

I propose two ways to handle this problem. One
involves changing the grammar translation so that
the resulting grammar is derivationally equivalent:
the LIG and the HG generate the same number

1The W under a node indicates wrapping two components
of the left daughter around those of the right daughter.



of derivations per string. The other way involves
defining a method of interpreting HG derivations
given an LIG interpretation function such that the
resulting interpreted HG generates the same set of
string-meaning pairs, or vice versa.

In this paper, I will show both of these are possi-
ble with LIG and HG: they are both derivationally
and interpretationally equivalent. After prelimi-
nary definitions in Section 2, Section 3 lays out
a function to construct, given an arbitrary LIG, a
derivationally equivalent HG, i.e. one which has
the same number of derivations per string, in a
sense comparing the multiset of strings generated.
Section 4 presents the reverse translation, from HG
to LIG.

In Section 5, I will prove that for any LIG
equipped with a homomorphic interpretation func-
tion on derivations, there is an HG with a homomor-
phic interpretation function such that the two inter-
preted grammars generate the same set of string-
meaning pairs (and vice versa). The notion of inter-
pretational equivalence is intended to encompass
any compositional property relating to meaning or
relations between parts of the derivation that lin-
guists wish to capture in a grammar as an analysis
of a language.

Section 6 discusses the relation between the ap-
proach taken in this paper and a few other papers
which have looked at notions of equivalence across
formalisms, and Section 7 concludes the paper.

2 Definitions

2.1 Linear Indexed Grammars

Linear Indexed Grammars (Gazdar, 1988) extend
Context-Free Grammars by adding stacks to non-
terminals and allowing rules where exactly one
daughter inherits the stack from the mother, mod-
ulo whatever changes to the stack the rule specifies.
In effect, there are now an infinite number of cat-
egories represented by nonterminals with stacks,
in the same way a pushdown automaton can be
viewed as having an infinite number of states.

Formally, an LIG is a 5-tuple of finite sets
G = (VN, VT, VI, S, P ), consisting of nonterminal
symbols VN, terminal symbols VT, stack symbols
(indices) VI, start symbols S ⊆ VN, and produc-
tion rules P . Each production rule has one of two
forms:

• Leaf: A[] → w, where A ∈ VN, w ∈ V ∗
T

• Branch: A[ζ] → B1 . . . Bi[η] . . . Bn, where n ≥
1; ζ, η ∈ VI ∪ {ϵ}; ∀j. Bj ∈ VN

Let n denote the rank of a Branch rule, and Leaf
rules have rank 0. I assume each Branch rule is
either Push (ζ = ϵ ̸= η), Pop (η = ϵ ̸= ζ), or No
Change (ζ = η = ϵ).2

Additionally, I will abbreviate such a rule as
A[ζ] → BLBc[η]BR, where Bc = Bi is the des-
ignated/central daughter of A which receives the
remainder of the stack, BL = B1 . . . Bi−1 repre-
sents the daughters to the left of the center, and
similarly BR = Bi+1 . . . Bn the daughters right of
the center.

Treat LIG production rules as a ranked alphabet,
where the rank of each alphabet symbol is the rank
of the rule. Let the set of trees over such rules
be TLIG (i.e. where the number of daughters of a
node matches the rank of the rule of that node).
LIG derivations (or derivation trees) are elements
of TLIG. Define T (G) as the set of trees over the
rules of G.

I will use the following abbrevia-
tion for trees, similar to rules: if m =
A[ζ] → B1 . . . Bi[η] . . . Bn, tL = t1, . . . , ti−1,
tc = ti, and tR = ti+1, . . . , tn where each
tj ∈ T (G), then m[t1, . . . , ti, . . . , tn] ∈ T (G) can
be abbreviated as m[tL, tc, tR].

Let cat denote the category (VN × V ∗
I ) of a

derivation. For trees consisting of a single node:

cat(A[] → w) = A[]

For larger trees: if m = A[ζ] → BLBc[η]BR,
cat∗(tL) = BL[], cat(tc) = Bc[ησ] (σ ∈ V ∗

I ),
and cat∗(tR) = BR[], then3

cat(m[tL, tc, tR]) = A[ζσ],

else it is undefined.
An LIG derivation d is well-formed with respect

to an LIG G, i.e. wfG(d), iff cat(d) = A[s] for
A ∈ VN, s ∈ V ∗

I , and for every node r in d, r ∈ P .
Let D(G) be the set of LIG derivations well-formed
with respect to G. A well-formed LIG derivation d
is complete with respect to an LIG G, i.e. cwfG(d),
iff cat(d) = A[] for some A ∈ S. Let DLIG be the
set of all well-formed LIG derivations, i.e. the set
of derivations which are well-formed with respect
to any LIG.

2This assumption does not affect any equivalence results;
simply replace any rule which performs more than one stack
actions with a set of rules which only perform one.

3f∗ denotes mapping f over a set or list of arguments.



A spine is a node which is not a designated
daughter, along with the maximal chain of desig-
nated daughters it dominates. Define the sequence
flagseq(d) = [flag(r) | r ∈ s], where s is the
spine of the root of d, and

flag(A[ζ] → ALAc[η]AR) =


(η if η ̸= ϵ,

)ζ if ζ ̸= ϵ,

ϵ otherwise.

Lemma 1. For a well-formed derivation d, if
cat(d) = A[], A ∈ VN, then flagseq(d) is a Dyck
word, i.e. one generated by S → ϵ | (η S )η S, for
each η ∈ VI.

The yield function y : D(G) → V ∗
T is the result

of reading the terminal symbols at the leaves of the
tree.

y(A[] → w) = w

y(m[tL, tc, tR]) = y∗(tL)y(tc)y∗(tR)

The language of a grammar L(G) is given as the
set of yields of the complete well-formed deriva-
tions of G: L(G) = {y(d) |cwfG(d)}

2.2 LIG Tree contexts

In this subsection, I will define LIG tree contexts,
which are closely related to LIG derivations, to
serve as a useful intermediate structure in the trans-
lation from LIG to HG derivations. Intuitively, LIG
tree contexts are almost like LIG derivation trees,
except the rule at the bottom of the root spine of
the derivation has been removed. Accordingly, a
context paired with a Leaf rule is isomorphic to a
derivation.

LIG tree contexts KLIG is the smallest set s.t.

• □ ∈ KLIG

• If m ∈ P has rank n ̸= 0; γ1, . . . , γn ∈ KLIG;
and β1, . . . , βi−1, βi+1, . . . , βn ∈ PL (are Leaf
rules); then m[(γ1, β1), . . . , γi, . . . , (γn, βn)] ∈
KLIG

and similarly for K(G), LIG tree contexts over a
grammar G.

It will be handy to have a function pt to extract
the node at the bottom of the spine of a derivation
(the tail of the spine), which will be a Leaf (rank 0)
rule (PL). Define pt : T (G) → K(G)× PL(G) as:

• For rank(β) = 0:
pt(β) = (□, β)

• For rank(m) > 0:
pt(m[tL, tc, tR]) = (m[pt∗L,Γ,pt∗R], β),
where (Γ, β) = pt(tc)

Let Γ{∆1 7→ ∆2} denote locating the subcon-
text or subtree ∆1 in Γ and replacing it with the
context or tree ∆2. Formally, Γ{∆1 7→ ∆2} =
∆2 if Γ = ∆1

m

tL γc{∆1 7→ ∆2} tR

if Γ = m

tL γc tR
and let Γ{∆} = Γ{□ 7→ ∆}.

It is straightforward to show that if pt(d) =
(Γ, β), then Γ{β} = d, and so pt is invertible.
From now on, I will treat elements of TLIG and
KLIG × PL as interchangeable.

Let C(G) denote the set of well-formed LIG tree
contexts over G – those which come from well-
formed LIG derivations.

C(G) = {Γ | d ∈ D(G),pt(d) = (Γ, β)}

I define the notion of category for an LIG con-
text: catc : C(G)×VN → VN ×V ∗

I , which returns
the category of what the context would be if it was
filled by a lexical rule of the given category.

catc(Γ, B) = cat(Γ{B[] → w})

Thus, catc(□, B) = B[].

2.3 Head Grammars

Head Grammars (Pollard, 1984; Roach, 1987) in-
crease the expressive power of CFGs by manipulat-
ing a slightly more complicated structure: a pair of
strings, separated by an arrow ↑. Derivations ma-
nipulate pairs of strings, and a new kind of rule is
added, one which wraps one pair of strings around
another.

Formally, an HG is a 4-tuple G =
(VN, VT, S, P ), consisting of nonterminal symbols
VN, terminal symbols VT, start symbols S ⊆ VN,
and production rules P . Each production rule has
one of three forms:

• Leaves: A → u↑v, where A ∈ VN;u, v ∈ V ∗
T

• Wrap: A W−→ Bl Br, where A,Bl, Br ∈ VN

• Concati: A
Ci−→ B1 . . . Bn, where

A,B1, . . . , Bn ∈ VN and i ≤ n



The rank of Leaves rules is 0, Wrap rules 2, and
Concat rules n. An abbreviation similar to that
for LIG rules will be applied to Concat rules:
A

Ci−→ B1 . . . Bn = A
Cc−→ BLBcBR.

Treating HG production rules as a ranked alpha-
bet, where the rank of each alphabet symbol is the
rank of the rule, let the set of trees over such rules
be THG, and an HG derivation is a tree of that set.
Define T (G) as the set of trees over the rules of G.

Let cat denote the category (VN) of a derivation.
For trees consisting of a single node:

cat(A → u↑v) = A

For larger trees: if m = A
W−→ Bl Br, cat(tl) =

Bl, and cat(tr) = Br, then

cat(m[tl, tr]) = A.

If m = A
Cc−→ BLBcBR, cat∗(tL) = BL,

cat(tc) = Bc, and cat∗(tR) = BR, then

cat(m[tL, tc, tR]) = A,

else it is undefined.
An HG derivation d is well-formed with respect

to an HG G, i.e. wfG(d), iff cat(d) ∈ VN, and for
every node r in d, r ∈ P . Let D(G) be the set of
HG derivations well-formed with respect to G. A
well-formed derivation d is complete with respect
to an HG G, i.e. cwfG(d), iff cat(d) ∈ S. Let
DHG be the set of all well-formed HG derivations,
i.e. the derivations well-formed with respect to any
HG.

The yield function y : D(HG) → V ∗
T × V ∗

T is
defined as:

y(A → u↑v) = u↑v

If m is a Wrap rule, y(tl) = xl↑yl, and y(tr) =
xr↑yr:

y(m[tl, tr]) = xlxr↑yryl

If m is a Concati rule and y(tj) = xj↑yj for all
1 ≤ j ≤ n:

y(m[t1, . . . , tn]) = x1y1 . . . xi↑yi . . . xnyn

The language of a grammar L(G) is defined as:

L(G) = {uv |cwfG(d),y(d) = u↑v}

3 Derivational equivalence: LIG to HG

Two grammars are derivationally equivalent iff
they generate the same number of derivations for
each string. Two formalisms F1 and F2 are deriva-
tionally equivalent iff for each grammar G1 ∈ F1,
there is some G2 ∈ F2 that is derivationally equiv-
alent to G1, and vice versa. In this section, I will
prove that for every LIG, there is a derivationally
equivalent HG.

First, given the source LIG G, I will define the
resulting HG LH(G) = G′. Next, I define a function
lh : DLIG → DHG which transforms a well-formed
LIG derivation into a well-formed HG derivation
while preserving its yield and category.

To show that G and G′ are derivationally equiv-
alent, I show that the set of well-formed deriva-
tions of G are bijective to the derivations of G′

via lh, and since lh preserves yields, so too are
the sets of well-formed derivations for a given
string. The diagram below4 commutes, that is,
lh∗(D(G)) = D(LH(G)) = D(G′).

LIG HG

P(DLIG) P(DHG)

LH

D D

lh∗

The proof proceeds by showing lh∗(D(G)) ⊆
D(LH(G)), and then the reverse, relying on the fact
that lh has an inverse lh−1.

3.1 Grammar translation

Theorem 2. For any LIG G, we can construct an
HG LH(G) = G′ s.t. G and G′ are derivationally
equivalent, i.e. D(G) and D(G′) contain the same
number of derivations per string generated.

This theorem will be proved over the next few
subsections. First, I present the construction of
LH(G). Given an LIG G = (VN, VT, VI, S, P ), con-
struct HG G′ = LH(G) = (V ′

N, VT, S, P
′) such that

• V ′
N = VN ∪ VN ∪

{Aη
B | A ∈ VN, B ∈ VN ∪ VN, η ∈ VI ∪ {ϵ}},

where VN = {A |A ∈ VN}

• For each rule in P : A[ζ] → ALAc[η]AR; add

to P ′: Aζ
B˜

Cc−→ AL
Acη
B AR, for all B ∈ VN,

where B˜ represents two separate instances of the
rule, one with B and one with B.

4P denotes the powerset.



• For each rule in P : A[] → w, add to P ′:
A˜ → ϵ↑w.

• Add these HG rules to P ′, for all A,B,D ∈ VN
and η ∈ VI:

– Aη
B

W−→ Aϵ
D

Dη
B COMP(OSE)

– A
W−→ Aϵ

B B FILL

– Aϵ
A → ϵ↑ϵ EMPTY

The construction of the HG G′ is similar to that
given in Vijay-Shanker and Weir (1994), with sev-
eral modifications to ensure derivational equiva-
lence. The additional nonterminals VN indicate a
subtree whose root is a rule originating in the LIG
(either a Leaf or Branch rule). This will prevent
spurious applications of the HG structural rules
(COMP, FILL, and EMPTY).

Additionally, there are additional nonterminals
written as fractions: Aη

B , presented in Vijay-
Shanker and Weir (1994) as (A,B, η). This HG
nonterminal corresponds to an LIG tree context that
would have category A[η . . .], if the gap was filled
in with a tree with category B[. . .]. Combining
these fraction nonterminals with Wrap rules allows
the HG to emulate the stack actions of the LIG.

3.2 The lh and lch translation functions

Let G be an arbitrary LIG, and G′ = LH(G). Then
lh : D(G) → D(G′) converts well-formed LIG
derivations to well-formed HG derivations. Since
pt can produce pairs of LIG contexts and Leaf
rules from trees, I will often define lh on deriva-
tions with the tail of the spine already separated
for convenience. After defining lh, I prove that the
HG derivation produced matches the category of
the source LIG derivation.

• lh(B[] → w) = B → ϵ↑w

• lh(Γ{B[] → w}) = A
W−→ Aϵ

B B

lch(Γ, B) B → ϵ↑w

,

where A → . . . is at the root of Γ.

A separate function to translate LIG tree contexts
combined with an LIG category to HG derivations
is given as lch : C(G)× VN˜ → D(G′).

• lch(□, B) = Bϵ
B → ϵ↑ϵ

• If Γ = A[η] → ALAc[]AR

tL ∆ tR

and η ∈ VI ∪ {ϵ},

then lch(Γ, B˜ ) = Aη
B˜

Cc−→ AL
Acϵ
B AR

lh∗tL lch(∆, B) lh∗tR

• If Γ = A[] → ALAc[η]AR

tL ∆ tR

and η ∈ VI (η ̸=

ϵ), then there are two subcases. Decompose
flagseq(Γ) into (ηu)ηv, where u, v are Dyck
words. Let ∆b be the context at the node cor-
responding to )η in the decomposition, and let
∆t = ∆{∆b 7→ □}.

(i) If ∆t = □ (i.e. the root of ∆ is a Pop η rule),
then lch(Γ, B˜ ) = Aϵ

B˜
Cc−→ AL

Acη
B AR

lh∗tL lch(∆, B) lh∗tR

(ii) Otherwise, lch(Γ, B˜ ) =
Aϵ
B˜

Cc−→ AL
Acη
B AR

lh∗tL
Acη
B

W−→ Acϵ
D

Dη
B

lch(∆t, D) lch(∆b, B)

lh∗tR

, where

D[η] → . . . is the top node of ∆b.

Note that the flagseq of ∆t is exactly u, a Dyck
word, and that of ∆b is exactly )ηv, with v a Dyck
word. Since the root of ∆b has )η as its flag, the
root node of ∆b is the Pop η rule that corresponds
to the Push η rule at the root of Γ.

Theorem 3. lh preserves categories: cat(lh(d)) =
cat(d), and thus the image of lh contains only well-
formed HG derivations.

Proof. The proof will proceed by induction on
these two statements:

(i) for d ∈ D(LIG), if cat(d) = A[], then
cat(lh(d)) = A

(ii) for Γ ∈ C(LIG), if catc(Γ, B) = A[η], and
lch(Γ, B) is defined, then cat(lch(Γ, B˜ )) =Aη
B˜ , for η ∈ VI ∪ {ϵ}

Base cases:

(i) cat(B[] → w) = B[]
cat(lh(□, B[] → w)) = cat(B → ϵ↑w) =
B



(ii) catc(□, B) = cat(□{B[] → w}) = B[]

catc(lch(□, B)) = cat(Bϵ
B → ϵ↑ϵ) =

Bϵ
B

Inductive cases:

(i) Let d = ΓB[] → u, and cat(d) = A[] =
catc(Γ, B). Let d′ = lh(Γ, B[] → u) =

A
W−→ Aϵ

B B

lch(Γ, B) B → ϵ↑u

. By the IH (ii), since

catc(Γ, B) = A[], cat(lch(Γ, B)) = Aϵ
B , so

cat(d′) = A.

(ii) Let Γ = A[ζ] → ALAc[η]AR

tL ∆ tR

with

catc(Γ, B) = A[ζ] and catc(∆, B) =
Ac[η].

Since cat∗(tL) = AL[], by the IH(i),
cat∗(lh∗(tL)) = AL, and similarly for tR.
It follows that (ii) is true at Γ by considering
two kinds of Γ:

(a) If η = ϵ: lch(Γ, B˜ ) =
Aζ
B˜

C−→ AL
Acϵ
B AR

lh∗tL lch(∆, B) lh∗tR

Since catc(∆, B) = Ac[], by the IH
cat(lch(∆, B˜ )) = Acϵ

B , so cat(d′) = Aζ
B˜ .

(b) If ζ = ϵ, η ̸= ϵ: lch(Γ, B˜ ) =
Aϵ
B˜

C−→ AL
Acη
B AR

lh∗tL
Acη
B

W−→ Acϵ
D

Dη
B

lch(∆t, D) lch(∆b, B)

lh∗tR

, where ∆t

and ∆b are as defined above in lch.

As noted above, the root of ∆b is a Pop
rule D[η] → . . ., and the designated daugh-
ter of that node is a context whose flagseq
is a Dyck word. Thus, by the IH (i),
catc(∆b, B) = D[η] and by the IH (ii)
cat(lch(∆b, B)) = Dη

B .

Also, as noted above, flagseq(∆t) is a
Dyck word. By the IH (ii), catc(∆, B) =
Ac[] and we know ∆t = ∆{∆b 7→ □},
so catc(∆t, D) = Ac[]. By the IH (ii),
cat(lch(∆t, D)) = Acϵ

D

Thus, cat(d′) = Aϵ
B .

Corollary 4. If d is a complete well-formed deriva-
tion of LIG G, then lh(d) is a complete well-
formed derivation of HG G′ = LH(G). This shows
lh∗(D(G)) ⊆ D(LH(G)).

Proof. This follows fairly straightforwardly from
the previous theorem. Given any complete well-
formed derivation d ∈ D(G), we can easily inspect
that each rule used in lh(d) is a rule of PG′ . Fur-
thermore, G and G′ share the same start symbols S,
so lh(d) must be complete and well-formed with
respect to G′.

The proof that lh preserves yields is very similar
to that of Theorem 3 and will not be provided here.
However, it follows as a corollary of Theorem 10.

Example 1. Here is an example of an LIG G1

which generates {ww |w ∈ {a, b}∗}. Figure
1 shows an LIG derivation d1 ∈ D(G1) for
abbabb, and the HG derivation lh(d1), which is
in D(LH(G1)).
G1 = ({S,T,A,B},{a,b},{1,2},{S},P1) where
P1 = {S[] → A S[1], S[] → B S[2], S[] → T[],
T[1] → T[] A, T[2] → T[] B, T[] → ϵ, A[] → a,
B[] → b}

3.3 Derivational equivalence

In this subsection, I complete the proof of Theorem
2 by proving that D(LH(G)) ⊆ lh∗(D(G)). To do
that, I will show that lh and lch are invertible, with
their inverses identified below. lh−1 : D(G′) →
C(G)× PL(G) is defined over HG derivations with
a simple category A, and lch−1 : D(G′) → C(G)×
VN˜ over those with a fractional category Aη

B .

(i) lh−1(B → ϵ↑w) = (□, B[] → w)

(ii) if d′ = A
W−→ Aϵ

B B

Γ B → ϵ↑w

, then lh−1(d′) =

(lch−1(Γ), B[] → w)

(iii) lch−1(Bϵ
B → ϵ↑ϵ) = (□, B)

(iv) if d′ = Aη
B˜

Cc−→ AL
Acϵ
B AR

tL tc tR

, then

lch−1(d′) = A[η] → ALAc[]AR

lh−1∗tL lch−1tc lh−1∗tR

, B˜




S[] → A S[1]

A[] → a S[] → B S[2]

B[] → b S[] → B S[2]

B[] → b S[] → T[]

T[2] → T[] B

T[2] → T[] B

T[1] → T[] A

T[] → ϵ A[] → a

B[] → b

B[] → b

S W−→ Sϵ
T T

Sϵ
T

C2−→ A S1
T

A → ϵ↑a S1
T

W−→ Sϵ
T

T1
T

Sϵ
T

C2−→ B S2
T

B → ϵ↑b S2
T

W−→ Sϵ
T

T2
T

Sϵ
T

C2−→ B S2
T

B → ϵ↑b S2
T

W−→ Sϵ
T

T2
T

Sϵ
T

C1−→ Tϵ
T

Tϵ
T → ϵ↑ϵ

T2
T

C1−→ Tϵ
T B

Tϵ
T → ϵ↑ϵ B → ϵ↑b

T2
T

C1−→ Tϵ
T B

Tϵ
T → ϵ↑ ϵ B → ϵ↑b

T1
T

C1−→ Tϵ
T A

Tϵ
T → ϵ↑ϵ A → ϵ↑a

T → ϵ↑ϵ

Figure 1: Derivation of abbabb in LIG G1 (left) and HG LH(G1) (right)

(v) if d′ = Aϵ
B˜

C−→ AL
Acη
B AR

tL
Acη
B

W−→ Acϵ
D

Dη
B

tt tb

tR

, then

lch−1(d′) = A[] → ALAc[η]AR

lh−1tL (lch−1
0 tt){lch−1

0 tb} lh−1tR

, B˜
,

where lch−1
0 denotes the first element re-

turned by lch−1.

It is not hard to verify that these functions com-
posed with lh and lch, respectively, return the iden-
tity. I show this is the case for (v):

lch(lch−1(d′)) =
Aϵ
B˜

C−→ AL
Acη
B AR

lh∗(lh−1∗tL)
Acη
B

W−→ Acϵ
D

Dη
B

lch(lch−1tt) lch(lch−1tb)

lh∗(lh−1∗tR)

By induction, lh∗(lh−1∗tL/R) = tL/R and
lch(lch−1tt/b) = tt/b, and we know that
(lch−1tt){lch−1tb} will split by lch into lch−1tt
and {lch−1tb}. This is because cat(tt) = Acϵ

D , so
cat(lch−1tt, D) = Ac[], a context whose flagseq

will be a Dyck word.
If Γ = A[ζ] → ALAc[η]AR

tL ∆ tR

, then

lch−1(lch(Γ, B˜ )) = A[] → ALAc[η]AR

lh−1(lh∗tL) ∆x lh−1(lh∗tR)
, B˜

, where

∆x = (lch−1
0 (lch(∆t, D))){lch−1

0 (lch(∆b, B))}.
By induction, we know ∆x = ∆t{∆b} = ∆,
and also that lh−1∗(lh∗tL/R) = tL/R; therefore,
lch−1(lch(Γ, B˜ )) = (Γ, B˜ ).It is important to note that for every derivation in
D(G′), either lh−1 or lch−1 is defined. To see this,
consider all the kinds of rules that could be at the
root of an arbitrary derivation d′ in D(G′). If the
root of d′ is a Leaves or Fill rule, lh−1(d) is defined
in cases (i) and (ii). If the root of d′ is an Empty
rule or a Concat rule which did not come from an
LIG Push rule, lch−1(d) is defined in cases (iii)
and (iv). The only time a Compose rule appears
in an HG derivation is when it is dominated by a
Concat-from-Push rule, which is defined in (v).

So every d′ ∈ D(LH(G)) can be mapped to
lh−1(d′), which is a derivation of D(G). Since
lh−1∗(D(LH(G))) ⊆ D(G), this proves that
D(LH(G)) ⊆ lh∗(D(G)). Since D(G) and
D(LH(G)) are bijective and the bijection lh pre-



serves yields, each derivation set contains the same
number of derivations per string generated. This
completes the proof of Theorem 2, that LH con-
structs derivationally equivalent HGs from LIGs.

4 Derivational equivalence: HG to LIG

In this section, I will prove the reverse of the previ-
ous section: that for every HG, there is a derivation-
ally equivalent LIG. The proof will proceed with
the same structure.

First, given a source HG G, I will define the re-
sulting LIG HL(G) = G′. Next, I define a func-
tion hlα : DHG → DLIG which transforms a
well-formed HG derivation into a well-formed LIG
derivation while preserving its yield and category.

To show that G and G′ are derivationally equiva-
lent, I show that the set of well-formed derivations
of G stand in correspondence to the derivations of
G′ via hl. I will show that the diagram below com-
mutes, that is, hl∗α(D(G)) = D(HL(G)) = D(G′).

HG LIG

P(DHG) P(DLIG)

HL

D D
hl∗α

The proof proceeds by showing hl∗α(D(G)) ⊆
D(HL(G)), and then the reverse. I show that hlα
has an inverse hl−1

−α and is thus bijective, so there
is a one-to-one correspondence between HG and
LIG derivations.

4.1 Grammar translation
Theorem 5. For any HG G, there is an LIG G′ =
HL(G) s.t. G and G′ are derivationally equivalent.

Again, this theorem will be proven through this
section. I first present the construction of the equiv-
alent LIG. Given an HG G = (VN, VT, S, P ), con-
struct LIG G′ = HL(G) = (V ′

N, VT, VN, S, P
′) such

that:

• V ′
N = VN ⊔ {α} ⊔ VT, where VT = {u |u ∈ VT}

• For each rule in P of the form A
Cc−→ ALAcAR,

add to P ′ the LIG rule A[] → ALAc[]AR.

• For each rule in P : A
W−→ BD, add to P ′:

A[] → B[D] and α[D] → D[].

• For each rule in P : A → u↑v, add to P ′:
A[] → uα[] v, u[] → u, and v[] → v.

• Add to P ′: α[] → ϵ .

The constructed LIG is similar to the original
HG, but there are several new nonterminals: VT,
which are solely to introduce the corresponding ter-
minals; and α, which serves as a gap in the LIG tree
structure, allowing the LIG to emulate the bipartite
nature of HG strings.

The indices of the LIG are just the nontermi-
nals of the HG. Intuitively, if an HG rule wraps B
around D, the corresponding LIG rule will push
D on the stack, to construct a D subtree inside the
B subtree at the bottom of its spine. It is in this
way that the constructed LIG can use the stack to
emulate the HG Wrap rules.

4.2 The hl translation function
hl : DHG → CLIG converts HG trees into LIG con-
texts. hlα fills the context resulting from hl with
the rule α[] → ϵ to produce a well-formed LIG
derivation which is equivalent to the HG deriva-
tion.

• hl(A → u↑v) = A[] → uα[] v

u[] → u □ v[] → v

.

• If d = A
Cc−→ ALAcAR

tL tc tR

, then hl(d) =

A[] → ALAc[]AR

(hl∗tL, α[] → ϵ ) hl(tc) (hl∗tR, α[] → ϵ )

.

• If d = A
W−→ BD

tl tr

, then hl(d) =

A[] → B[D]

hl(tl)


α[D] → D[]

hl(tr)

.

The hl translation function preserves categories
and well-formedness. To see this, first, I prove a
lemma about context composition.
Lemma 6. Composition lemma for categories
Let Γ,∆ ∈ C(LIG). Let σ1, σ2 ∈ V ∗

I . If
catc(Γ, B) = A[σ1] and catc(∆, D) = B[σ2],
then catc(Γ{∆}, D) = A[σ1σ2].

Proof. Induction over the structure of Γ.

Theorem 7. hl preserves categories
If d ∈ DHG, then hlα(d) = hl(d){α[] → ϵ}

is a well-formed LIG derivation. In addi-
tion, hl preserves categories to the extent that
catc(hl(d), α) = cat(d)[].



Proof. Induction will proceed on the statement
catc(hl(d), α) = cat(d)[].
Base case: d = A → u↑v. cat(d) = A.
cat(hl(d), α) = A[].
Inductive cases:
(i) If d = A

Cc−→ ALAcAR

tL tc tR

and cat(d) = A,

then cat(tL/c/R) = AL/c/R. By induction,
catc(hl(tL/c/R), α) = cat(tL/c/R)[] = AL/c/R[].
So, catc(hl(d), α) = A[].

(ii) If d = A
W−→ BD

tl tr

, and cat(d) = A, then

cat(tl) = B and cat(tr) = D. By induc-
tion, catc(hl(tl), α) = cat(tl)[] = B[], and
catc(hl(tr), α) = cat(tr)[] = D[].

Let Γ = hl(tl) and ∆ = α[D] → D[]

hl(tr)

, so

catc(∆, α) = α[D] and hl(d) = A[] → B[D]

Γ{∆}

.

Applying Lemma 6 where cat(Γ, α) = B[]
and cat(∆, α[]) = α[D] yields cat(Γ{∆}, α[]) =
B[D]. Thus, cat(hl(d), α[]) = A[].

Corollary 8. If d is a complete well-formed deriva-
tion of HG G, then hlα(d) is a complete well-
formed derivation of LIG G′ = HL(G). This shows
hl∗α(D(G)) ⊆ D(HL(G)).

Proof. This follows fairly straightforwardly from
the previous theorem. Given any complete well-
formed derivation d ∈ D(G), we can easily inspect
that each rule used in hlα(d) is a rule of PG′ . Fur-
thermore, G and G′ share the same start symbols S,
so hlα(d) must be complete and well-formed with
respect to G′.

Again, the proof of yield preservation is not dif-
ficult, and would follow the same structure as The-
orem 7. It also follows as a corollary of Theorem
12.

Example 2. Figure 2 shows an example of an HG
G2 which generates {ww |w ∈ {a, b}∗}, and the
equivalent LIG G′

2 resulting from HL. The figure
also shows a G2 derivation for abbabb, and the G′

2

derivation resulting from hl.
G2 = ({S,T,U,A,B}, {a,b}, {S},P2), where P2 =

{S C2−→ A T, T W−→ S A, S C2−→ B U, U W−→ S B,
A → ϵ↑a, B → ϵ↑b}

4.3 Inverting hl

In this subsection, I complete the proof of Theorem
5 by proving that D(HL(G)) ⊆ hl∗α(D(G)). To do
that, I will show that hlα has an inverse, hl−1

−α, and
use it to show that hl−1∗

−α (D(HL(G))) ⊆ D(G).
Since the last step of hlα is to add α[] → ϵ , the

first step of hl−1
−α is to remove it: hl−1

−α(d
′) =

hl−1(d′{α[] → ϵ 7→ □}). Then, hl−1 is the in-
verse of hl. hl−1 can be spelled out as:

(i) If d′ = A[] → uα[]v

u[] → u □ v[] → v

, then

hl−1(d′) = A → u↑v.

(ii) If d′ = A[] → ALAc[]AR

(γL, α[] → ϵ ) γc (γR, α[] → ϵ )

,

then hl−1(d′) =

A
Cc−→ ALAcAR

hl−1∗(γL) hl−1(γc) hl−1∗(γR)

.

(iii) If d′ =
A[] → B[D]

γl


α[D] → D[]

γr

, then

hl−1(d′) = A
W−→ BD

hl−1(γl) hl−1(γr)

. That is, d′

is a LIG context whose root node is a Push D
rule; this means somewhere along the spine
must be the corresponding Pop D rule because
flagseq(d′) is a Dyck word. The correspond-
ing Pop rule is found in the same way as in
the lh translation function.

It is not difficult to verify that hl ◦ hl−1 = id
and hl−1 ◦ hl = id; I show case (iii) below:

hl(hl−1(d′)) =
A[] → B[D]

hl(hl−1(γl))


α[D] → D[]

hl(hl−1(γr))

.

The flagseq of γl and γr must be Dyck words
as well, and γl and γr have a gap shaped α, mean-
ing hl−1 is defined over them, and by induction,
hl(hl−1(γl/r)) = γl/r

For hl−1 ◦ hl: If d = A
W−→ BD

tl tr

, then hl(d) =

A[] → B[D]

hl(tl)


α[D] → D[]

hl(tr)

. The intuition here



S C2−→ A T

A → ϵ↑a T W−→ S A

S C2−→ B U

B → ϵ↑b U W−→ S B

S C2−→ B U

B → ϵ↑b U W−→ S B

S → ϵ↑ϵ B → ϵ↑b

B → ϵ↑b

A → ϵ↑a

S[] → A T[]

A[] → α[] a

α[] → ϵ a[] → a

T[] → S[A]

S[] → B U[]

B[] → α[] b

α[] → ϵ b[] → b

U[] → S[B]

S[] → B U[]

B[] → α[] b

α[] → ϵ b[] → b

U[] → S[B]

S[] → α[]

α[B] → B[]

B[] → α[] b

α[B] → B[]

B[] → α[] b

α[A] → A[]

A[] → α[] a

α[] → ϵ a[] → a

b[] → b

b[] → b

Figure 2: Derivation of abbabb in HG G2 (left) and LIG HL(G2) (right)

is that since tl is a well-formed HG derivation, the
flagseq of hl(tl) will be a Dyck word, so hl−1

will split hl(d) at the Pop D corresponding to the
Push D at the root of hl(d). Thus, hl−1(hl(d)) =

A
W−→ BD

hl−1(hl(tl)) hl−1(hl(tr))

= d.

Combining the fact that hl and hl−1 are inverses
with Theorem 7 results in the category preservation
of hl−1

−α: cat(d′) = cat(hl−1
−α(d

′))[]. Given any
(complete) well-formed derivation d′ ∈ D(HL(G)),
hl−1∗

−α (d′) will be a (complete) well-formed deriva-
tion in D(G). Therefore, D(G) and D(HL(G)) are
bijective. Additionally, since hlα preserves yields,
the number of derivations per string is the same in
G and HL(G). This completes the proof of Theo-
rem 5, that HL constructs derivationally equivalent
LIGs from HGs.

5 Interpretational equivalence

Let us now consider the ways grammars can match
semantics to syntactic structures, following the ap-
proach taken by Miller (1999). An interpreted
grammar consists of a grammar paired with a rule
interpretation function: (G, µ), where µ is a func-
tion from rules of G to functions over the interpre-
tation domain M . The interpretation domain M

can be a set of any kind of elements: lambda terms,
strings, and even trees. Two interpreted grammars
are interpretationally equivalent iff they generate
the same set of string-meaning pairs using their
respective interpretation functions. And two for-
malisms F1 and F2 are interpretationally equiva-
lent iff for each interpreted grammar G1 ∈ F1 with
interpretation function µ1, there is some (G2, µ2)
(with G2 ∈ F2) that is interpretationally equivalent
to (G1, µ1), and vice versa.

Formally, for a grammar G, let µ denote a func-
tion which assigns interpretations to rules of G: it
maps each rank 0 rule to an element of M , and
each rank n rule to an n-ary function Mn → M .
Then, let J·Kµ be the homomorphic extension of the
rule interpretation function µ, defined over D(G):
for β rank 0, JβKµ = µ(β), and for m rank n,
Jm[t1, . . . , tn]Kµ = µ(m)Jt1Kµ . . . JtnKµ.

Additionally, define the interpretation function
J·Kµ over tree contexts in such a way that if d =
Γ{β}, then JdKµ = JΓKµ(µ(β)).

• J□Kµ = λx. x

• If Γ = m

tL γc tR

, then

JΓKµ = λx. µ(m)JtLKµ(JγcKµ(x))JtRKµ.



Lemma 9. Composition lemma for interpretations
The interpretation of the composition of two tree

contexts Γ,∆ is function composition:
JΓ{∆}Kµ = λx. JΓKµ(J∆Kµ(x))

Proof. Induction over the structure of Γ.

The proofs to show interpretational equivalence
between LIG and HG will proceed as follows: for
any LIG G equipped with an arbitrary rule interpre-
tation function µ, I will show how to construct a
rule interpretation function µ′ for the HG LH(G),
such that for all d ∈ D(G), JdKµ = Jlh(d)Kµ′

.
In essence, in addition to translating grammars to
grammars with LH, and derivations to derivations
with lh, we can also translate interpretation func-
tions to interpretation functions. I will also show
the same for the reverse translation: how to con-
struct an function to interpret derivations resulting
from hl, in grammars resulting from HL.

5.1 LIG to HG
Theorem 10. lh preserves interpretations

Given an LIG G with interpretation function µ,
we can construct an HG interpretation function
µ′ for G′ = LH(G) such that for every derivation
d ∈ D(G), JdKµ = Jlh(d)Kµ′

.

• µ′(B → ϵ↑w) = µ(B[] → w)

• If m = A[ζ] → ALAc[η]AR and

m′ = Aζ
B˜

Ci−→ AL
Acη
B AR, then µ′(m′) =

λtLtctRx. µmtL(tcx)tR

• µ′(Aη
B

W−→ Aϵ
D

Dη
B ) = λxyz. x(yz) COMP

• µ′(A
W−→ Aϵ

B B) = λxy. xy FILL

• µ′(Aϵ
A → ϵ↑ϵ) = λx. x EMPTY

Proof. We want to show that both lh and lch pre-
serve interpretations. We prove this by induction
on both of these statements:

• ∀d ∈ D(G).JdKµ = Jlh(d)Kµ′

• ∀B ∈ VN˜,Γ ∈ C(G).JΓKµ = Jlch(Γ, B)Kµ′

whenever lch(Γ, B) is defined

Base cases:

(i) If d = B[] → u, then JdKµ = µ(B[] → u).
Jlh(d)Kµ′

= JB → ϵ↑uKµ′
= µ(B[] → u).

(ii) If Γ = □, then JΓKµ = λx. x.
Jlch(Γ, B)Kµ′

= JBϵ
B → ϵ↑ϵKµ

′
= λx. x

Induction:

(i) If d = Γ{β}, then JdKµ = JΓKµ(µ(β)). By
the inductive hypothesis, for any B, JΓKµ =
Jlch(Γ, B)Kµ′

, where defined.

Jlh(d)Kµ
′

= µ′(FILL)(Jlch(Γ, B)Kµ
′
)(Jlh(β)Kµ

′
)

= Jlch(Γ, B)Kµ
′
(Jlh(β)Kµ

′
)

= JΓKµ(µ(β))

(ii) If Γ = m

tL ∆ tR

and

m = A[ζ] → ALAc[η]AR, then
JΓKµ = λx. µ(m)JtLKµ(J∆Kµ(x))JtRKµ.

By induction, JtL/RKµ = Jlh(tL/R)Kµ
′

and J∆Kµ = Jlch(∆, B)Kµ′
for any B s.t

lch(∆, B) is defined. There are two kinds
of Γ, depending on the root node:

(a) If m is not a Push rule (η = ϵ), then

Jlch(Γ, B)Kµ
′

= µ′(lh(m))Jlh(tL)Kµ
′
Jlch(∆, B)Kµ

′
Jlh(tR)Kµ

′

= (λtLtctRx. µ(m)tL(tcx)tR)JtLKµJ∆KµJtRKµ

= λx. µ(m)JtLKµ(J∆Kµx)JtRKµ

(b) If m is a Push rule (η ̸= ϵ), then let m′ =
Aϵ
B˜

Ci−→ AL
Acη
B AR. Thus, lch(Γ, B˜ ) =

m′

lh∗tL
Acη
B

W−→ Acϵ
D

Dη
B

lch(∆t, D) lch(∆b, B)

lh∗tR

, where

∆t{∆b} = ∆.

J∆Kµ = J∆t{∆b}Kµ =
λx. J∆tKµ(J∆bKµ(x)) by Lemma 9.

By the IH, J∆tKµ = Jlch(∆t, D)Kµ′
and

J∆bKµ = Jlch(∆b, B)Kµ′
.



Jlch(Γ, B˜ )Kµ′

= µ′(m′)Jlh(tL)Kµ
′
(µ′(COMP)

Jlch(∆t, D)Kµ
′
Jlch(∆b, B)Kµ

′
)Jlh(tR)Kµ

′

= µ′(m′)JtLKµ(µ′(COMP)J∆tKµJ∆bKµ)JtRKµ

= µ′(m′)JtLKµ[λz. J∆tKµ(J∆bKµ(z))]JtRKµ

= µ′(m′)JtLKµJ∆KµJtRKµ

= λx. µ(m)JtLKµ(J∆Kµx)JtRKµ

So lh and lch both preserve the results of any arbi-
trary interpretation function µ via µ′.

Corollary 11. Weak equivalence and preservation
of yields by lh follows from interpretational equiv-
alence and preservation of interpretations. Let
µ = y, the natural yield function for LIGs, and
µ′ = y, the natural yield function for HGs, with a
pair of strings being equivalent to a function from
strings to strings: u↑v = λx. uxv.

5.2 HG to LIG
This subsection shows the reverse: how to preserve
interpretations in the translation from HG to LIG.
LIG interpretations in this section will involve lists,
so here are a few preliminary definitions regarding
lists: [x]↓ = x and x:[y, . . .] = [x, y, . . .].

Theorem 12. hl preserves interpretations
Given an HG G with µ, we can construct an

interpretation function µ′ for HL(G), such that
∀d ∈ D(G). [JdKµ] = Jhl(d)Kµ′

[ ], i.e. JdKµ =
(Jhl(d)Kµ′

[ ])↓. That is, the interpretation of hl(d)
applied to the empty list is equal to the interpreta-
tion of d contained in a list. To define µ′:

• µ′(U → u) = [ ] and µ′(A[] → U α[]V ) =
λusv.(µ(A → u↑v)):s

• If m = A
Cc−→ ALAcAR and m′ =

A[] → ALAc[]AR, then µ′(m′) =

λx(y:s)z. (µ(m)(x↓)y(z↓)):s.

• If m = A
W−→ BD, then µ′(A[] → B[D]) =

λ(x:y:s). (µmxy):s and µ′(α[D] → D[]) =
λx. x.

• µ′(α[] → ϵ ) = [ ] ALPHA

Proof. Note that since the image of hl is C(LIG),
the interpretation of contexts applies.
Base case: d = A → u↑v, so JdKµ =
µ(A → u↑v).

hl(d) = A[] → U α[]V

U [] → u □ V [] → v

, so

Jhl(d)Kµ′
[ ] = µ′(A[] → U α[]V )[ ] =

(λs. (µ(A → u↑v)):s)[ ] = [µ(A → u↑v)] =
[JdKµ]
Inductive cases:
(i) If m = A

Cc−→ ALAcAR and d =
m

tL tc tR

, then JdKµ = µ(m)JtLKµJtcKµJtRKµ.

Let m′ = A[] → ALAc[], AR, so hl(d) =
m′

(hl∗γL, α[] → ϵ hl(γc) (hl∗γR, α[] → ϵ )
By the inductive hypothesis, [JtL/c/RKµ] =

Jhl γL/c/RKµ′
[].

Jli(d)Kµ
′
([ ])

= (λx. µ′(m′)J(hl∗γL, ALPHA)Kµ
′

(Jhl γcKµ
′
x)J(hl∗γR, ALPHA)Kµ

′
)[ ]

= µ′(m′)(Jhl∗γLKµ
′
[ ])(Jhl γcKµ

′
[ ])(Jhl∗γRKµ

′
[ ])

= µ′(m′)[JtLKµ][JtcKµ][JtRKµ]

= (µ(m)([JtLKµ]↓)(JtcKµ)([JtRKµ]↓)):[ ]
= [µ(m)JtLKµJtcKµJtRKµ]

(ii) If m = A
W−→ BD and d = m

tl tr

, then

JdKµ = µ(m)JtlKµJtrKµ.

Let Γ =
A[] → B[D]

hl tl
and ∆ =

α[D] → D[]

hl(tr)
,

so hl(d) = Γ{∆}. By induction, [Jtl/rKµ] =

Jhl tl/rKµ
′
[ ]. This entails Jhl tlKµ

′
= λx. JtlKµ:x.

J∆Kµ′
= λy. (λx. x)(Jhl trKµ

′
y) = Jhl trKµ

′
.

JΓKµ′
= λz. (λ(x:y:s). (µmxy):s)(Jhl tlKµ

′
z).

Jhl(d)Kµ
′
[ ] = JΓ{∆}Kµ′

[]

= JΓKµ
′
(J∆Kµ

′
[ ]) (by Lemma 9)

= (λ(x:y:s). (µmxy):s)(Jhl tlKµ
′
(Jhl trKµ

′
[ ]))

= (λ(x:y:s). (µmxy):s)((λx. JtlKµ:x)[JtrKµ])
= [µ(m)JtlKµJtrKµ]

Finally, since hlα(d) = hl(d){α[] → ϵ},
Jhlα(d)Kµ

′
= [JdKµ].

Again, weak equivalence and preservation of
yields by hlα follows as an instance of µ. In addi-



tion, if we let µ be the identity function on D(G),
µ′ will emulate hl−1

−α.

6 Discussion

The translation from LIG to HG presented in Vijay-
Shanker and Weir (1994) formed the basis for this
paper; because they only considered generated
string languages, their translations did not preserve
the number of derivations per string. Thus, to study
equivalences deeper than of sets of strings, Section
3.1 presented a modified version of their grammar
translation which is indeed derivation-count pre-
serving.

However, it is worth noting that under the seman-
tic translation defined in Theorem 10, the original
translation algorithm in Vijay-Shanker and Weir
(1994) is also string-meaning preserving, despite
not producing derivationally equivalent grammars.
The HGs produced from their translation contain
infinite families of spurious ambiguities, but the se-
mantic translation is defined in such a way to over-
look these instances of spurious ambiguity, treating
them as semantically vacuous. This shows that
derivational equivalence is not a prerequisite to in-
terpretational equivalence. In general, derivational
equivalence as a notion may become less useful
when working with infinitely ambiguous grammars,
but interpretational equivalence does not.

Other researchers have proposed ways to com-
pare generative capacity at a level beyond strings,
such as Koller and Kuhlmann (2009) and Schif-
fer and Maletti (2021). Most notably, Kanazawa
(2014) shows that the set of derivation trees of ar-
boreal indexed grammars (with categories stripped
of indices at each node) is equal to the set of trees
derived by simple context-free tree grammars. In
the base case, this equivalence roughly reduces
down to the deindexed derivation trees of LIG be-
ing equal to the trees derived by Tree-Adjoining
Grammars (TAG), the latter of which has essen-
tially been proven strongly equivalent to HG in
Fujiyoshi and Kasai (2000).

The goal of establishing notions of equivalences
beyond string languages is to consider what kinds
of properties each formalism is capable of ascrib-
ing to each string. If these properties, such as se-
mantics, are computed compositionally from the
derivations, then in comparing interpretations, we
are implicitly comparing derivations which have
that interpretation. In theory, it is not enough to es-
tablish that the derived trees of a tree grammar are

in correspondence with the deindexed derivation
trees of an index grammar, since there could be
multiple derivations per derived tree in the former
case, or multiple derivations which are identical
modulo indices in the latter case. However, it is
easy to see that given the semantic translation devel-
oped here, Kanazawa’s result can be strengthened
to interpretational equivalence.

7 Conclusion

In this paper, I explored two kinds of equivalence
beyond weak equivalence and proved they both ap-
ply to LIG and HG. Two grammars are derivation-
ally equivalent if they generate the same number of
derivations per string, and two grammars are inter-
pretationally equivalent if they generate the same
set of string-interpretation pairs.

These proofs were facilitated by the functions lh
and hlα, which translated derivations from a gram-
mar in one formalism to an equivalent grammar in
the other formalism. It is important to note that
these functions did not depend on the grammars
themselves in any way. This means that they could
be defined over DLIG and DHG, showing that all
possible LIG and HG derivations stand in a bijec-
tion. This notion of derivational equivalence of
formalisms sheds light on how exactly working
with a linear stack-based category system is equiv-
alent on some fundamental level to wrapping pairs
of strings.
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