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Abstract

We present an encoding of the meaning-text
theory into abstract categorial grammars, a
grammatical formalism based on λ-calculus.
It adresses some shortcomings of a previous
encoding (Cousin, 2025). This encoding shows
some limitations, especially the articulation of
dependencies within structures and modifiers
behavior (predicative role of adjectives and ad-
verbs at semantic and syntactic levels, number
of modifiers, etc.). Reusing Cousin’s (2025)
grammars composition, we present a represen-
tation of syntactic dependency structures based
on de Groote (2023) that overcomes these limi-
tations, with a focus on deep-syntax.

1 Introduction

The work presented in this article takes place in a
context of encoding the meaning-text theory (MTT)
into abstract categorial grammars (ACG). It ex-
tends previous work presented in (Cousin, 2023b,a,
2025). While using the same ACG architecture, we
provide here a new encoding of dependency struc-
tures based on (de Groote, 2022, 2023) that con-
cerns MTT’s deep-syntactic and surface-syntactic
representations. This work falls within a text gen-
eration context with formal methods. Similar moti-
vations are to be found in Grammatical Framework
(Ranta, 2004). This work’s aims are to have strong
control over generated text in order to be sure that
it indeed conveys the message to be expressed, and
to implement MTT’s linguistic structures through
which this control operates. In order to do so, we
rely on a formal model, ACGs.

1.1 MTT and ACGs
MTT (Mel’čuk et al., 2012, 2013, 2015, see sec-
tion 2) is a linguistic theory describing the link
between the meaning and the text of an utterance.
MTT can be used for generation as well as for anal-
ysis purposes. It is composed of seven representa-
tion levels (including semantic, deep-syntactic, and

surface-syntactic levels) and six transition modules
between these levels. Each representation is com-
posed of at least both predicative and communica-
tive structures. MTT heavily relies on the key con-
cepts of lexical functions (LF) and paraphrase. Sys-
tems presented in (Wanner et al., 2010) and (Lareau
et al., 2018) are two examples of MTT applied to
text generation. These systems use graph trans-
ducers to perform generation, while we use ACGs
which have the advantage of being reversible.

ACGs (de Groote, 2001, see section 3) are a
grammatical framework based on λ-calculus, en-
abling the representation of other grammatical for-
malisms. For instance, Pogodalla (2017) shows an
implementation of TAGs into ACGs. ACGs can
also be used in generation and analysis (Kanazawa,
2007), since they are reversible. Their reversibility
is a property we take avantage of in this work.

In this article, we focus on an encoding of MTT
into ACGs.

1.2 Related Work

1.2.1 MTT Into ACG Encoding

(Cousin, 2023b,a) shows such an encoding of MTT
into ACGs, that only takes predicative structures
into account and completely ignores communica-
tive structures. This encoding enables several lin-
guistic phenomena’s handling, such as collocations
or paraphrase generation. Such phenomena are
enabled thanks to the encoding of LFs among oth-
ers. This article reworks Cousin’s (2023a) ACG
architecture and composition.

(Cousin, 2025) reuses this implementation to
take the communicative structure into account.
Theme-rheme opposition (Mel’cuk, 2001; Pol-
guère, 1990), included in communicative structures,
plays a crucial role in the determination of the deep-
syntactic tree corresponding to the semantic graph
of an utterance. Indeed, depending on the commu-
nicative structure, for two semantic representations



sharing the same predicative structure, the obtained
expression differ. It is the theme-rheme opposition,
that, for instance, makes a copula appear (or not) in
deep-syntax when an adjective modify a noun, and
therefore decides if the adjective will be expressed
as an attributive (“[the purple dragon]Rheme") or
as a subject complement (“[the dragon]Theme [is
purple]Rheme"). Two expressions obtained from
the same semantic predicative structure are differ-
ent if they have different communicative structures.
In this case, the two expressions are usually not
paraphrases.

Since the communicative structure plays an im-
portant role in MTT’s generation process, we keep
Cousin’s (2025) addition of this structure. How-
ever, (Cousin, 2023b,a, 2025) show some limita-
tions, like the inability to use multiple modifiers on
one same predicate for instance. These limitations
are detailed below.

1.2.2 ACGs and Dependency Strutures
de Groote (2022, 2023) presents an ACG encoding
of a semantic-syntax interface to derive formal log-
ical semantic representations à la Montague. The
syntactic part of de Groote’s interface uses depen-
dency structures. We use here a similar approach
to add non-mandatory dependencies to syntactic
structures, such as adverbial and adjectival ones.

However, several aspects show differences:

• de Groote (2023) uses higher-order ACGs:
their parsing complexity is not polynomial,
and possibly only semi-decidable (de Groote,
2015). We want to use ACGs from a specific
class, ACGs of order 2, to have polynomial
complexity;

• de Groote’s (2023) encoding is made toward
analysis (syntax to semantics), we are working
toward generation (semantic to syntax);

• de Groote (2023) defines the coherence princi-
ple: regardless of the computation order of de-
pendents (given one common governor), com-
puted structures are logically equivalent and
yield the same semantic interpretation. The
coherence principle is not respected here. In-
deed, respecting de Groote’s coherence prin-
ciple would mean computationally intractable
or even undecidable ACGs. Since we focus
on the opposite direction to him (i.e., gener-
ation), and heavily rely on ACG parsing, it’s
something we choose to avoid.

1.3 Contributions
This article present a new version of MTT into
ACG encoding, with a focus on deep-syntax real-
ization. It reuses original aspects of MTT, such as
paraphrase and lexical functions (that enable the
representation and handling of idiomatic expres-
sions for instance). We are interested in the way
linguistic structures, especially MTT’s ones, can
be expressed in ACGs. The ACG encoding shows
some advantages. First, it can be used in generation
as well as analysis, since ACGs are reversible (see
section 3). Second, some similarities with other for-
malisms can be found, which enable a comparison
to them, and to reuse some aspects of these for-
malisms in our encoding. It is for example the case
of modification presented in section 5 and inspired
by Pogodalla’s (2017) TAG into ACG encoding.

Our contributions are the following:

• syntactic dependency structures allowing the
use of multiple modifiers (for both deep-
syntax and surface-syntax; this article focuses
on deep-syntax), less general than de Groote’s
(2023) ones, but which parsing is polynomial;

• decidable ACGs (as opposed to Cousin (2025)
who had higher order ACGs);

• an encoding that naturally falls within
Cousin’s (2023a) ACG architecture, with a
better encoding of predicative structures hav-
ing multiple dependents expressed by modi-
fiers (adjectives and adverbs).

Sections 2 and 3 present MTT and ACGs. Sec-
tions 4 and 5 detail the used ACG architecture and
the deep-syntax encoding. Section 6 presents ob-
tained results before the conclusion in section 7.

2 Meaning-Text Theory (MTT)

MTT (Mel’čuk et al., 2012, 2013, 2015) is a linguis-
tic theory aiming at representing the link between
the meaning and the textual representation of an
utterance. The meaning is “a linguistic content to
be communicated" (Milićević, 2006) and the text
is “any fragment of speech" (Milićević, 2006). In
order to do so, MTT uses a meaning-text model
(MTM, see. figure 1) composed of seven represen-
tation levels and six transition modules. MTT uses
key concepts of lexical functions (LFs, Mel’Čuk
and Polguère, 2021) and paraphrase (Iordanskaja
et al., 1991; Milićević, 2007). These concepts are
not detailed here.



2.1 MTT Architecture
A MTM (see. figure 1) is composed of seven rep-
resentation levels, each one corresponding to an
eponym utterance representation, namely the se-
mantic (SemR), deep-syntactic (DSyntR), surface-
syntactic (SSyntR), deep-morphologic and surface-
morphologic (resp. DMorphR and SMorphR),
deep-phonologic and surface-phonologic (resp.
DPhonR and SPhonR) representations.
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Figure 1: Schema of a MTM (Mel’čuk et al., 2012)

Between each pair of adjacent levels operates
a transition module, named after the level (of the
pair) nearest to the semantic level. For instance, the
semantic transition module operates the transition
between SemR and DSyntR.

Each representation level is made of several sub-
structures, among which a predicative structure
(graphs for SemR, trees for DSyntR and SSyntR,
strings for the four remaining ones) and a commu-
nicative structure. The latter bears (among other
communicative oppositions) the theme-rheme op-
position (Polguère, 1990), that decorate and com-
plement the predicative structure (see figure 3).

A transition module carry out all necessary op-
erations between two levels to transform the pre-
vious representation into the next one. It handles
structure changes, such as the semantic module
that transforms semantic graphs into deep-syntactic
trees, but can also perform other operations such
as paraphrase steps (see section 2.3).

2.2 DSyntR
DSyntR is made of four substructures (see figure 2),
namely: the deep-syntactic structure (DSyntS), the
deep-syntactic communicative structure (DSynt-
CommS), the deep-syntactic prosodic structure
(DSynt-ProsS) and the deep-syntactic anaphoric
structure (DSynt-AnaphS) (Mel’čuk et al., 2013).
In this article, we only consider the first two ones,
DSyntS and DSynt-CommS.

DSyntR =

⟨ DSyntS, DSynt-CommS, DSynt-ProsS, DSynt-AnaphS ⟩

Figure 2: Composition of a DSyntR

DSyntS are dependency tree structures, which
nodes are deep-syntactic lexemes and edges are
labeled with deep-syntactic relations (see figure 3).
Several examples of DSyntS are given in sec-
tion 5. Deep-syntactic relations are mainly actan-
tial (actant I, actant II, etc.), attributive (ATTR),
or coordinative (COORD) relations. Its lexemes
are deep lexemes (or “rough” lexemes): colloca-
tions and idiomatic expressions are represented by
one single lexeme (and not by as many lexemes as
there are words composing the expression, like in
SSyntS), and some lexical categories, like preposi-
tions and determinants, are not represented (prepo-
sitions appear in SSyntS and determinants in the
morphologic levels).

DSynt-CommS is represented by markers that
decorate the DSyntS with communicative opposi-
tions. For instance, theme and rheme markers are
represented as boxes that encapsulates subtrees (see
figure 3). The subtree in the theme-box (respec-
tively rheme-box) is labeled as theme (resp. rheme)
and therefore represents the theme (resp. rheme).

Copul(purple ) = be

dragon purple

Theme

Rheme

I II

Figure 3: DSyntS and DSynt-CommS representing “The
dragon is purple."

2.3 Semantic Transition Module
The semantic module performs the transition be-
tween SemR and DSyntR. SemS are graphs which
nodes are semantemes and which edges are se-
mantic relations (labelled 1 , 2 , etc. depending
on the semantic actant (first, second, etc.) the edge
is pointing at). Hence, the semantic module per-
forms structural operations to transform a SemS
into a DSyntS. While doing so, some LF might
appear, such as the ones expressing support verbs
(like Operi), that are semantically empty and there-
fore no semanteme represent them in SemS, or the
one indicating a copula (Copul) that is also miss-
ing from SemSs. Figure 3 shows an example of
DSyntS bearing the Copul LF.



On top of such structural operations, the seman-
tic module also performs paraphrase steps, such
as semantic paraphrasing and deep-syntactic para-
phrasing. Semantic paraphrasing can bee seen as
unfolding the semantic graph with semanteme defi-
nitions. Deep-syntactic paraphrasing relies heavily
on LFs. Both paraphrase steps are described in
(Milićević, 2007).

3 Abstract Categorial Grammars (ACGs)

ACGs (de Groote, 2001, whose definitions are used
here) are a grammatical framework based on λ-
calculus and used to represent other grammatical
formalisms. An ACG is composed of two vocab-
ularies (abstract and object vocabularies) that are
linked by a lexicon. The abstract language, build
upon the abstract vocabulary, corresponds to the
set of all abstract grammatical structures, such as
analysis trees. The object language, build upon the
object vocabulary, corresponds to the set of surface
realizations of abstract language structures, such
as strings. Section 3.1 gives necessary definitions
to define ACGs in section 3.2. Section 3.3 present
some ACGs operations and properties.

3.1 Types, Signatures, and Lexicons
Definition 1 Be A a set of atomic types. T (A) is
the set of linear implicative types, obtained induc-
tively over A:

• if a ∈ A then a ∈ T (A)

• if α, β ∈ T (A) then (α → β) ∈ T (A)

Definition 2 A higher order signature. Σ is a tu-
ple Σ = ⟨ A, C, τ ⟩, where:

• A is a set of atomic types,

• C is a set of constants,

• τ : C −→ T (A) is a function associating a
type to constants.

⊢Σ1 t : s expresses that the type of a λ-term
t is s in the signature Σ (or t : s if there is no
ambiguity on the used signature). Λ(Σ) denotes
the set of λ-terms obtained using constants of C,
variables, abstractions and applications.

For instance, dragondt : T means that the
constant dragondt has type T and inviteds :
MOD → G ′ → G → G means that the constant
inviteds has type1 MOD → G ′ → G → G , so that

1More detail about these types is given in section 5.

it expects a first argument of type MOD (a modifier),
a second argument of type G ′ (an optional argu-
ment) and a third argument of type G (a mandatory
argument) to obtain a term of type G (a graph).
Σdeep-syntactic-0tr and Σdsynt-tree, illustrated in fig-
ure 5, are higher-order signatures which extracts
are given in figures 8a (page 8) and 6 (page 6).

Definition 3 Let Σ1 and Σ2 be two signatures. A
lexicon L12 from Σ1 to Σ2 is a pair of morphisms
⟨F,G⟩ such that F : τ(A1) −→ τ(A2) and
G : Λ(Σ1) −→ Λ(Σ2).

We write L12(t) = γ to express that γ is the
interpretation of t by L12 (or t := γ if there is
no ambiguity on the used lexicon), regardless of
whether the used morphism is F and both t and γ
are types or the used morphism is G and they are
terms.

Then, LdsyntRel (dragon
ds) = λ A. A dragondt

means that the constant dragonds (from
Σdeep-syntactic-0tr) is interpreted by LdsyntRel

in Σdsynt-tree as the term λ A. A dragondt .
Similarly, LdsyntRel (invite

ds
rtr ) = λ A X Y .

A (λx . A1(A2 invite
dt Y ) x ) X means that the

constant invitedsrtr of Σdeep-syntactic-0tr is interpreted
by LdsyntRel in Σdsynt-tree as the term λ A X Y .
A (λx . A1 (A2invite

dtY ) x ) X . In figure 5,
LdsyntRel is the lexicon from Σdeep-syntactic-0tr to
Σdsynt-tree. Its extract is given in figure 9 (page 9).

3.2 ACG
We may now define notions of ACG, abstract lan-
guage and object language:

Definition 4 An abstract categorial grammar is a
tuple G = ⟨Σ1,Σ2,L12, s⟩ where:

• Σ1 = ⟨A1, C1, τ1⟩ and Σ2 = ⟨A2, C2, τ2⟩
are two higher order signatures,

• L12 = Σ1 −→ Σ2 is the lexicon,

• s ∈ T (A1) is the distinguished type of the
grammar.

Definition 5 The abstract language A and the ob-
ject language O of an ACG G = ⟨Σ1,Σ2,L12, s⟩
are:

• A = {t ∈ Λ(Σ1)| ⊢Σ1 t : s is derivable}

• O = {t ∈ Λ(Σ2)| ∃u ∈ A(G) such that
t = L12(u)}

This article uses βη-equivalence as equality be-
tween λ-terms.
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Figure 4: ACG composition of MTT encoding

Both abstract and object languages of an ACG
are sets of λ-terms obtained by induction over
eponym signatures of the ACG. For example, the
set of deep-syntactic trees corresponds to the object
language of the ACG (illustrated in figure 5) made
of Σdeep-syntactic-0tr (its abstract signature), Σdsynt-tree

(its object signature), and LdsyntRel.

3.3 Operations and Properties

ACGs allow the use of three main operations,
as illustrated in figure 5. Application is the
operation of applying the lexicon of an ACG
from its abstract signature to its object signature
(Ldsynt(γ

dst) = γds ). Lexicons are reversible, and
the operation of reversing the lexicon from the
object signature of an ACG to its abstract sig-
nature is called parsing (L−1

semRel (γ
str ) = {γdst}).

Both operations (application and parsing) can
be composed to form a transduction operation
(Ldsynt(L−1

semRel (γ
str )) = {γds}). Two transduc-

tion examples are shown in figure 5.

γstr

Σsemantic−tr

γdst

Σdeep−syntacic−tr

γds Σdeep−
syntactic−

0tr

γdt

Σdsynt−tree

LsemRel Ldsynt

LdsyntRel

Parsing
(LsemRel

−1)
Application

Transduction from Σsemantic − tr
to Σdeep − syntactic − 0tr

Transduction
from Σsemantic − tr to Σdsynt − tree

Figure 5: Example of application, parsing and transduc-
tion operations

An ACG is characterized by its order and its
complexity. The complexity of an ACG is its pars-
ing complexity.

Definition 6 The order of a type τ ∈ T (A) is in-
ductively defined:

• order(τ) = 1 if τ ∈ A,

• order(α → β)
= max(1 + order(α), order(β)) otherwise.

The order of an abstract constant is the order of its
type, and the order of an ACG is the maximum of
the order of its abstract constants.

The complexity of an ACG is the maximum of
the orders of its atomic types realizations. An ACG
of order γ and of complexity η is written ACG(γ,η).

We aim to use a specific class of ACGs, ACGs said
of order two, since their parsing complexity is de-
cidable and polynomial (Salvati, 2005; Kanazawa,
2017)

4 MTT Into ACG Encoding

We use the ACG architecture of (Cousin, 2025)
(that uses Cousin, 2023b,a architecture while
adding theme-rheme opposition to the semantic
to deep-syntactic transition). However, we rewrite
several ACGs to model DSyntR and SSyntR depen-
dency trees based on de Groote’s (2023) ACGs. We
use the ACGtk software (Guillaume et al., 2024) to
implement this model.

Figure 4 shows the architecture and composition
of Cousin (2023b, 2025) that we use here. It is
divided into five areas:

• Areas 1 - 2: transduction between Σsemantic-tr

and Σdsynt-tree allows transitions between
SemR and DSyntR. Area 1 corresponds to se-
mantic and area 2 corresponds to deep-syntax;

• Area 3: transduction between Σdsynt-tree and
Σdsynt-rule performs deep-syntactic paraphrase
steps;



• Area 4: transduction between Σdsynt-tree and
Σdsynt-0fl realizes LFs eventually present in
DSyntR;

• Area 5: transduction between Σdsynt-0fl and
Σssynt-tree transforms DSyntR (without LFs)
into SSyntS. Area 5 corresponds to surface-
syntax.

Our modifications concern areas 2, 4 and 5. This
article only present the ones about the second area,
i.e., about deep-syntax.

Notations: In the following, Σdeep-syntactic-tr is
referenced as Σdst (deep-syntax with thematic-
ity), Σdeep-syntactic-0tr as Σds (deep-syntax without
thematicity), and Σdsynt-tree as Σdt (deep-syntactic
trees). A constant representing a lexeme LEX in
the signature ΣS is written lexS . For instance,
dragondt is the constant representing the lexeme
DRAGON in Σdt. A term representing an expression
E in Λ(ΣS) is written γSE . For instance, the term
encoding the DSyntR associated to the expression
(cpd): “the calm purple dragon" in Σdt is written
γdtcpd .

5 Deep-Syntax Encoding

We adapt de Groote’s (2023) dependency struc-
tures. This section details how it is done for deep-
syntactic dependency structures. Figures 8a, 8b,
6, 8c and 9 (on the following pages) respectively
show extracts of Σdst, Σds, Σdt, Ldsynt and LdsyntRel

that are used below.

5.1 DSyntS Encoding (Σdt)
Σdt (deep-syntactic trees, see figure 6) enables
DSyntS representation. DSyntS are dependency
tree structures, which nodes are deep lexemes and
branches are deep-syntactic relations, such as I, II,
or ATTR for example. These three examples re-
spectively correspond to relations expressing the
first actant, the second actant, or an attributive de-
pendent of a deep lexeme. A relation is represented
as a branch in the deep-syntactic tree that starts at
the governor and points toward its dependent.

Each deep lexeme is encoded in this implementa-
tion by a constant of type T (see (1)). In MTT, cat-
egories are distinguished at the deep-syntactic level.
However, for simplification purposes, we chose to
represent them only at the surface-syntactic level of
the present encoding and not at its deep-syntactic
level. Therefore, grammatically incorrect struc-
tures can be produced. However, they will be fil-

tered out by lexicons and won’t be generated at the
surface syntactic level (see section 5.3). Hence, no
distinction is made between grammatical categories
in Σdt.

dragondt, invitedt : T (1)

Since a relation starts at one lexeme and points
toward another, it is represented by a constant that
takes two arguments of type T (being resp. the
governor and the dependent), and that has a result-
ing type T . Hence, each deep-syntactic relation
(such as the ones in (2)) is of type T → T → T .

I,ATTR : T → T → T (2)

Since the resulting type of a relation is T , a
dependency (i.e. a governor, the relation, and its
dependent) is represented by a term of type T as
well. This term can in turn be used as a governor
(to add another dependency to its governor) or as
a dependent (to make it depend from another lex-
eme). Hence, type T is used for constants and
terms encoding trees, sub-trees, and single nodes.

Σdsynt-tree

T : type

I, II, III : T → T → T
ATTR : T → T → T

Conv21 : T → T → T

calmdt : T
invitedt : T

dragondt : T
oftendt : T

purpledt : T
reasondt : T
specificdt : T
wyverndt : T

Figure 6: Extract of Σdsynt-tree (noted Σdt, that enables
the representation of deep-syntactic trees)

Figure 7 shows two examples of DSyntS along
with terms of Λ(Σdt) encoding them. Figure 7a
pictures a rather simple DSyntS, having only one
dependency, while figure 7b pictures a more com-
plex one, with several dependencies.

5.2 DSyntR Encoding (Σdst and Σds)

As stated in the introduction (section 1), a
DSyntR contains a communicative structure,
DSynt-CommS. This structure is absent from Σdt

(deep-syntactic trees) and Σds (deep-syntax with-
out thematicity), but is present in Σdst (deep-syntax
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ATTR

γdt
cd = ATTR dragondt calmdt

: T

(a) “the calm dragon" (γdt
cd )

invite

dragon

calm

wyvern often reason

specific

ATTR

I II ATTR ATTR

ATTR

γdt
cdoiwfsr = ATTR (ATTR (I (II invitedt

wyverndt) (ATTR dragondt calmdt))

oftendt) (ATTR reasondt specificdt)
: T

(b) “The calm dragon often invites the wyvern for a specfic
reason" (γdt

cdoiwfsr )

Figure 7: Representation of DSyntS associated to ex-
pressions “the calm dragon" and “The calm dragon
often invites the wyvern for a specific reason" and their
associated object terms (from Λ(Σdt)).

with thematicity). Indeed, theme-rheme opposi-
tion plays a crucial role in the determination of
the DSyntR that corresponds to a SemR. In order
to represent this role and enable the potential cor-
responding choices inherent to the theme-rheme
opposition of a SemR, thematic annotations are
encoded in the type of constants from Σstr (seman-
tic with theme-rheme opposition) and Σdst (deep-
syntax with thematicity).

In both Σdst and Σds, lexemes are encoded with
constants of type G-like. These types stand for
graph, subgraph or node and follows the same use
principle as type T . Variants can be found, such
as Gt or Gr , that respectively express a theme or
a rheme marking. If a prime symbol is used (like
G ′ or G ′

t ), it denotes an optionally expressible ar-
gument2. Type Gf ,r is used to indicate that a pred-
icative structure contains a thematic opposition (i.e.
both theme and rheme areas) with the index −f ,
and that its dominant node (the future tree root) is
marked as rheme with the index −r .

For instance, invitedstrtr (which type expression

2Optionally expressible arguments are detailed in sec-
tion 5.3.

is given in (3)) is a constant encoding a verb which
predicative structure expects two arguments, the
first one being marked as theme (type Gt ), the
remaining part of the predicative structure being
marked as rheme (type Gr ). Its first argument (of
type MOD) stands for a potential modifier3, such as
an adverbial group.

invitedst
rtr : MOD → Gt → Gr → Gf ,r (3)

Thematicity markers in the constants’ types are
lost between Σdst and Σds. Ldsynt only purpose is
to erase these types markings (see Figure 8c). For
instance, Ldsynt(invite

dst
rtr ) = invitedsrtr is given in

(4). Therefore, expressions of terms from Λ(Σdst)
and Λ(Σds) are really similar (see figures 8a and
8b, page 8).

inviteds
rtr : MOD → G → G → Gf (4)

It is LdsyntRel (see Figure 9) that will really build
all DSyntS in Λ(Σdt) from Λ(Σds). In other words,
Σdst is used to express and control thematicity
contraints and optional arguments issues (see sec-
tion 5.3), while LdsyntRel realizes DSyntS. Ldsynt

and Σds are intermediary lexicon and signature
used for encoding purposes.
Σdst bears the encoding of all constraints and is

therefore used in examples from the following sec-
tion about these constraints. However, for reading
simplicity purposes, we use in section 5.5 exam-
ples from Σds (see figure 8b). Their pendants from
Σdst do not add any information for section 5.5
purpose and can be found in figures 8a, and their
interpretation by Ldsynt in figure 8c (page 8).

5.3 Constraints Encoding (Σdst and LdsyntRel)

Since all lexemes of Σdt are encoded by constants
of type T , incorrect structures can be build upon
Λ(Σdt), like the one illustrated in (5). In this ex-
ample, two major issues occur. First, in a DSyntR,
according to well-formedness rules of MTT, each
node (or lexeme) has at most one actancial relation
of each kind; dragondt can’t be the governor of
two I relations. Second, invitedt is a lexeme ex-
pecting at least one dependent (“Y is invited"), and
usually two, since its predicative structure contains
two arguments: X invites Y .

γdt
illicit= I (I dragondt wyverndt) invitedt

: T
(5)

3Modifiers are described in section 5.5.



Σdeep-syntacic-tr

Gr , Gt , G
′
r : type

MODrr : type
MODtr : type
MOD′

rr : type
MODjrr : type

Cr→t : Gr → Gt

I dst
MOD,rr : MODrr

I dst
MOD,tr : MODtr

I dst
MOD′,rr : MOD′

rr

I dst
MODj ,rr : MODjrr

calmdst
rr : MODrr → MODjrr → MODjrr

invitedst
rtr : MODtr → Gt → Gr → Gf ,r

invitedst
rrt : MOD′

rr → G ′
r → Gt → Gf ,r

dragondst
r : MODjrr → Gr

oftendst
tr : MODtr → MODtr

purpledst
rr : MODrr → MODjrr → MODjrr

fsrdsttr : MODtr → MODtr

wyverndst
r : MODjrr → Gr

(a) Extract of Σdeep-syntactic-tr (noted Σdst)

Σdeep-syntacic-0tr

G, G ′ : type
MOD : type

MOD′ : type
MODj : type

I ds
MOD : MOD

I ds
MOD′ : MOD′

I dst
MODj : MODj

calmds : MOD → MODj → MODj
inviteds

rtr : MOD → G → G → G
inviteds

rrt : MOD′ → G ′ → G → G
dragonds : MODj → G
oftends : MOD → MOD

purpleds : MOD → MODj → MODj
fsrds : MOD → MOD

wyvernds : MODj → G

(b) Extract of Σdeep-syntactic-0tr (noted Σds)

Ldsynt

Gr ,Gt := G
G ′

r := G ′

MODrr , MODtr := MOD
MOD′rr := MOD′

MODjrr := MODj

Cr→t := λp. p
I dst

MOD,rr , I
dst

MOD,tr := I ds
MOD

I dst
MOD′,rr := I ds

MOD′

I dst
MODj ,rr := I ds

MODj

calmdst
rr := calmds

invitedst
rtr := inviteds

rtr

invitedst
rrt := inviteds

rrt

dragondst
r := dragonds

oftendst
tr := oftends

purpledst
rr := purpleds

fsrdsttr := fsrds

wyverndst
r := wyvernds

(c) Extract of Ldsynt

Figure 8: Extracts of Σdeep-syntactic-0tr (deep-syntax without thematicity), Σdeep-syntactic-tr (deep-syntax with thematicity)
and Ldsynt, lexicon from Σdeep-syntactic-tr to Σdeep-syntactic-0tr

In order to tackle these issues, two main strate-
gies are used. Regarding the number of dependents
(and their nature), we use abstract signatures to con-
trol obtained structures by encoding the constraints
in the constants types. Hence, these constraints
are dealt with in abstract signatures Σdst and Σds.
Figures 8a and 8b give extracts of Σdst and Σds as
examples.

Each predicate has a predicative structure that ex-
pects mandatory dependents. Among these depen-
dents, some are necessarily expressible, and other
may be omitted. Let’s take the example of INVITE.
When using this verb, we know that someone1 in-
vites another someone2. However, sentences like
“Charlie is invited" are correct (with “Charlie" be-
ing the invited someone2). Hence INVITE has two
mandatory dependents (someone1 and someone2),
but the first one is optionally expressible. Such
constraints are expressed in the type of constants of
Σdst, with the prime notation indicating an option-
ally expressible argument. In the case of a noun
like DRAGON, no dependent is expected, hence no
argument is mandatory. (6) and (7) 4 give the types
of constants invitedstrrt and dragondst

r illustrating
the encoding of this constraint.

invitedst
rtr : MODtr → Gt → Gr → Gf ,r (6)

4MOD-like types (MODtr , MOD′
rr , etc.) are modifiers types

and explained in section 5.5. Their theme-rheme markings
reflect the thematic markings of their semantic actants.

invitedst
rrt : MOD′

rr → G ′
r → Gt → Gf ,r

dragondst
r : MODjrr → Gr

(7)

Nevertheless, (7) shows two constants for
INVITE, invitedstrtr and invitedstrrt . The former has
its first argument marked as theme, and will pro-
duce sentences like “[The dragon]Theme [invites
the wyvern]Rheme", where the first dependent of
INVITE is not optionally expressible (since it is the
theme, hence it can not be omitted). The latter has
its second argument marked as theme, and will pro-
duce sentences like “[The wyvern]Theme [is invited
by the dragon]Rheme", where the first semantic de-
pendent of INVITE, DRAGON, is marked as rheme
and can easily be omitted (“[The wyvern]Theme

[is invited]Rheme"). So, on top of constraints in-
herent to the predicative structure (optionally ex-
pressible arguments), we need to take the thematic
opposition and its consequences into account. This
example (with INVITE) is one illustration of the
role of the thematic opposition. This opposition is
to be found in communicative structures of MTT,
that complement its predicative structures. Theme-
rheme opposition is not limited to active/passive
distinction5. Another example of its implication
can be found in the introduction (subsection 1.2.1)

5See (Polguère, 1990) and (Mel’cuk, 2001) for further
details about MTT’s communicative structure and the the-
matic opposition. Some similarities can be found between
theme-rheme opposition and information structure (Kruijff-
Korbayova and Steedman, 2003; Steedman, 2024).



LssyntRel

G, G ′
r := T

MOD, MOD′ := (T → T ) → (T → T )
MODj := T → T

I ds
MOD := λv . v

I ds
MOD′ := λv . v
I ds

MODj := λn. n

calmds := λM A P . (ATTR (A P) (M (λm. m) calmdt))
inviteds

rtr := λM X Y .M (λx . I (II invitedt Y ) x ) X
inviteds

rrt := λM X Y .M (λx . I (II (Conv21 invitedt) x ) Y )X
dragonds := λA. A dragondt

oftends := λM PX .M (λx . ATTR (P x ) oftendt)X
purpleds := λM A P . (ATTR (A P) (M (λm.m) purpledt))

fsrds := λM PX .M (λx . ATTR (P x ) (ATTR reasondt specificdt) X
wyvernds := λA. A wyverndt

Figure 9: Extract of LdsyntRel, lexicon from Σdeep-syntactic-0tr to Σdsynt-tree

where it determine the apparition (or not) of a cop-
ula. As shown in (7), the thematic opposition is
also encoded in the type of abstract constraints (see
(Cousin, 2025) for further details on the thematic
opposition encoding).

Regarding the well-formedness of DSyntR, it is
enforced in LdsyntRel (see Figure 9) that associates
abstract constants from Σds to their object terms in
Λ(Σdt). (8)6 shows the interpretations by LdsyntRel

of a predicate expecting two dependents, respec-
tively an actant I and an actant II (invitedsrtr ) and the
interpretation of a noun which predicative structure
does not except any dependents (dragonds ).

LdsyntRel(invite
ds
rtr )

:= λ M X Y . M (λ x . I (II invitedt Y ) x ) X

LdsyntRel(dragon
ds)

:= λ A. A dragondt

(8)

The encoding of interpretations by the lexicon
solves the issue of having only well-formed struc-
tures in Λ(Σdt). Since only correct interpretations
are encoded, only correct structures will be gener-
ated. Reversely, if an incorrect structure is build
upon Σdt, no antecedent will be found by parsing
of LdsyntRel, and hence no SemR can be obtained
(when continuing the analysis).

We therefore have the following equalities7:

6Abstract varibles A and M encode modifiers. Their be-
havior is explained in section 5.5.

7Constants IdstMOD and its variants (that depends on the the-
matic markings of their governor predicative structure) have a
MOD-like type (i.e., a variant of MOD) and are interpreted by
LdsyntRel◦Ldsynt as the identity.

LdsyntRel(Ldsynt(dragon
dst
r (calmdst

rr I dst
MOD,rr I dst

MODj )))

= ATTR dragondt calmdt

LdsyntRel(Ldsynt(invite
ds
rtr I dst

MOD,rt (Cr→t

(dragondst
r I dst

MODj ,rr ))(wyvern
dst
r I dst

MODj ,rr )))

= I (II invitedt wyverndt) dragondt

(9)

5.4 Discussion
This encoding presents some major differences
with de Groote’s (2023) one, since we made
choices opposed to his, as stated earlier in sec-
tion 1.2.2. He encodes dependency relations in the
abstract signature, while we do so in the object sig-
nature. In (de Groote, 2023), relations (or rather,
constants encoding them) constrain the grammat-
ical categories of their governor and dependent.
Here, we do not have grammatical categories, at
least not at the deep-syntactic level. In the encod-
ing presented here, lexemes themselves (and not
relations) constrain their dependents: they force the
mandatory ones to be represented (by a lexeme or a
dummy constant indicating that the dependent is, in
fact, not expressed) and the obligatory expressible
constant to be expressed (in this case the dummy
constant of type G ′ can’t be used). Dependency
relations are encoded in the object signature, and
do not constrain anything nor bear any constraints.

On top of that, de Groote (2023) respects what he
calls the coherence principle: regardless of the de-
pendencies’ computation order, obtained structures
are logically equivalent. This result is obtained
using affine constants. However, we want linear
constants and ACGs of order 2. It is a constraint
we fix ourselves for parsing computation and com-
plexity issues, and in order to encode the model in



ACGtk to automate the computation process. Thus,
respecting the coherence principle seems incom-
patible with this constraint. Moreover, the order in
which relations are computed does matter in our
case. At the deep-syntactic level, relations are not
ordered, so one could think the order is of no im-
portance. However, their order does matter at the
surface syntactic level, since it will be used in the
linearisation process toward the morphological lev-
els. Consequently, two structures having the same
dependencies but in different orders are to yield two
different expressions in MTT. Such representations
have to be considered different and not logically
equivalent. Hence, the dependency order does mat-
ter at the surface-syntactic level. Then, even if the
order doesn’t matter at the deep-syntactic level, it
is also useless to care for the coherence principle at
that level since it will have to be broken at the next
level. Additionally, not respecting the coherence
principle makes both syntactic levels have homo-
geneous encoding. For all these reasons, ACGs
presented here do not respect the coherence princi-
ple.

Next section describes the encoding of modifiers.
One straightforward possibility to do so would have
been to allow a bounded arbitrary number of op-
tional dependents slots in the lexemes’ lexical en-
try. This, however, would significantly complexify
the deep-syntactic paraphrase part of the encoding
(area 3 of figure 4), and one could always find a
case where the arbitrary number of slots would be
too small to represent the wanted expression. For
these reasons, we chose to use a recursive solution,
drawn from Pogodalla’s (2017) TAG encoding, and
described below.

5.5 Modifiers Encoding
Modifiers, such as adjectives and adverbial groups,
have a specific behavior at the deep-syntactic level.

We may observe that they have a specific behav-
ior in the semantic module as well. In a SemR,
the modifier predicates over the entity that is modi-
fied (the modifier governs the predicate), while in
a DSyntR, dependencies between a modifier and a
predicate usually go from the predicate to the mod-
ifier: the predicate governs the modifier (some ex-
ceptions can be found, but that is the general case).
Hence, a dependency inversion is to be found in the
semantic module during the transition from SemR
to DSyntR (Mel’čuk et al., 2013, p.248). We ac-
count for this, but since it is not our point here, we
focus on DSyntR themselves.

In a DSyntR, modifiers are not mandatory de-
pendents of a lexeme. A lexeme can have zero
modifier (as illustrated in figure 10a), one modifier
(as illustrated in figures 7a and 7b for DRAGON),
or more (as illustrated for DRAGON in figure 10b
and 7b for INVITE).

dragon

γdt
d = dragondt

: T

(a) “the dragon" (γdt
d )

dragon

calm purple

ATTR ATTR

γdt
cpd = ATTR (ATTR dragondt calmdt) purpledt

: T

(b) “the calm purple dragon" (γdt
cpd)

Figure 10: Representations of DSyntS associated to
nominal expressions “the dragon" and “the calm purple
dragon", and associated object terms (from Λ(Σdt)).

In Montague semantics, a modifier
like an adverb usually have a type like
(NP → S ) → (NP → S ) (Carpenter, 1998).
Since we encode constraints in the abstract
signature and do not make distinctions between
grammatical categories (see section 5.1), such
a type would be translated with a type like
(G → G) → (G → G), i.e., a higher order type.
To avoid such higher order types, we draw from
Pogodalla’s (2017) TAG encoding into ACGs
and introduce MOD-like atomic types, used for
modifiers in both Σdst and Σds.

In Σdt, modifiers are considered like any other
lexemes and encoded with a constant of type T
(see figure 6, page 6). In Σdst and Σds, MOD-like
types are used.

5.5.1 Adverbial Modifiers

In a SemR, an adverbial group can govern up to
two semantemes, namely the semanteme it mod-
ifies, and the first semantic actant of this seman-
teme (see figure 11, adverbial group “for a specific
reason"). Therefore, an adverb is encoded with a
constant of type8 MOD → MOD, and MOD is inter-
preted by LdsyntRel as (T → T ) → (T → T ), i.e.,
a type similar to the classical one mentioned above.
(10) gives the example of oftends . Then, each con-
stant of Σds encoding a predicate that accepts an



(invite)

(dragon) (wyvern)

(often)

(reason)

(specific)

1 2

1

1

2

3

Figure 11: SemS associated to the expression “The
dragon often invites the wyvern for a specific reason"
that illustrate the semantic behavior of adverbial groups
“often" and “for a specific reason".

adverbial modifier (i.e. verbs and adjectives8) have,
in Σds, its first argument being of type MOD (or
MOD′ depending on the expressibility of the first
argument), to enable a possible modification to take
place. Following arguments have type G or G ′ (de-
pending on the expressibility of arguments), and
the final argument has type G (see (10)9 for the
example of invitedsrtr ).

oftends : MOD → MOD

inviteds
rtr : MOD → G → G → G

LdsyntRel(MOD) := (T → T ) → (T → T )

LdsyntRel(often
ds) := λ M P X . M (λ x .

ATTR (P x ) oftendt) X

(10)

With such an encoding, adverbs are represented
by constants of order 2, and several adverbs can
be used to modify one predicate (provided its type
accepts adverbial modifiers) as shown in (11)10.

inviteds
rtr (oftends I ds

MOD)

: G → G → G

inviteds
rtr (oftends (fsrds I ds

MOD))

: G → G → G

(11)

5.5.2 Adjectival Modifiers
Adjectives have the same encoding except that, in
their SemR, they only have one dependent, the
semanteme they modify. Hence, another MOD-
like type is used for adjectives: MODj . An ad-
jective can be modified by an adverb (“the often

8An adverbial modifier can modify another adverbial mod-
ifier. Hence, adverb type should be MOD → MOD → MOD.
For reasons of readability and computational complexity we
won’t consider this case here and use type MOD → MOD in-
stead. However, it can be treated in the exact same way as
adverbial modification on adjectives (see subsection 5.5.2).

9Interpretations of inviteds
rtr and dragonds by LdsyntRel are

given in (8)
10fsrds is a constant representing the adverbial group “for

a specific reason"

calm dragon"), so the first argument of a con-
stant encoding an adjective is of type MOD, fol-
lowed by the core of the adjective constant type:
MODj → MODj (see (12)9). Similarly to constants
admitting adverbial modifiers, constants admitting
adjectival modifiers also have their first argument
being of type MODj .

purpleds : MOD → MODj → MODj

dragonds : MODj → G

LdsyntRel(purple
ds) := λM A P . (ATTR (A P)

(M (λm.m) purpledt))

(12)

We then have the following equalities (expres-
sions of γdtd , γdtcpd and γdtcdoiwfsr are given in fig-
ures 10a, 10b and 7b respectively, along with their
DSyntS representation):

γds
d = dragonds IMODj

LdsyntRel(γ
ds
d ) := γdt

d

γds
cpd = dragonds(calmds I ds

MOD

(purpleds I ds
MOD I ds

MODj ))

LdsyntRel(γ
ds
cpd) := γdt

cpd

γds
cdoiwfsr = inviteds

rtr (often
ds(fsrds I ds

MOD))

(dragonds(calmds I ds
MOD I ds

MODj ))

(wyvernds I ds
MODj )

LdsyntRel(γ
ds
cdoiwfsr ) := γdt

cdoiwfsr

(13)

6 Evaluation and Results

6.1 Evaluation

Lexicons and vocabularies used here have between
30 and 50 lexemes approximately. It’s a toy gram-
mar, but it would be possible to extract data from
SUD annotated corpora (Gerdes et al., 2018) or
from the RL-fr (ATILF, 2025) to extend our cov-
erage. Syntactic structures of MTT are depen-
dency structures that roughly correspond to the
ones of SUD. Labels on relations are different,
but tree structures of MTT surface-syntactic rep-
resentations are very similar to SUD representa-
tions. Syntactic representations of the encoding
presented here are in accordance with the ones of
annotated corpora from Grew (Guillaume, 2021).
These ACGs are tested on 63 terms build upon
Λ(Σdst). Tests scripts perform transduction opera-
tions toward Σsemantic as well as toward Σssynt-tree.
For 63 input terms, 430 output terms (i.e., surface-
syntactic structures) are generated and manually
verified.



6.2 Results
This encoding of MTT into ACGs enables the rep-
resentation of concepts such as LFs, semantic para-
phrasing, surface-syntactic paraphrasing, the com-
municative structure (theme-rheme opposition) and
its role, as well as some deep-syntactic paraphras-
ing. It also allows the representation and handling
of several lexical phenomena, among which syn-
onymy, idiomatic expressions, and modifiers be-
havior. Several modifiers can be used to modify
the same predicate. ACGs of this encoding are
from the specific class of ACGs of order 2, which
parsing is decidable and polynomial.

7 Conclusion

Inspired by (de Groote, 2022, 2023), the encoding
of MTT into ACG presented in this article is closer
to more classical encodings such as Pogodalla’s
(2017) TAG encoding into ACG. In contrast to pre-
vious encodings (Cousin, 2023b,a, 2025), this en-
coding is of order 2, and not of higher order. This
enables, on top of polynomial ACG complexity,
that all used lexicons can be parsed. Consequently,
this encoding can be used for generation as well as
analysis purposes. It is the case for every transition
between two signatures, independently of whether
the whole transition between semantic and surface-
syntax is considered, or only an intermediate tran-
sition. Theme-rheme opposition is accounted for
in semantic and deep-syntactic representation lev-
els, what enables a more accurate SSyntS gener-
ation from a SemR. Additionally, the lexemes do
no longer define and decide exactly how many de-
pendents they will have. They only constrain their
mandatory dependents, and do so via the type of
abstract constants encoding them. The addition of
optional dependents, such as modifiers (adjectives
and adverbs), is permitted.
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