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Abstract

In variational learning of two grammars, the
grammar with the greater advantage is glob-
ally asymptotically dominant, meaning that this
grammar wins out over inter-generational time,
leading to the extinction of its competitor. Here,
we prove necessary and sufficient conditions for
global asymptotic dominance in competition be-
tween an arbitrary number 𝑛 ≥ 2 of grammars,
working in the deterministic limit of iterated
inter-generational linear reward–penalty learn-
ing.

1 Introduction

Grammar competition (Kroch, 1989), particularly
when combined with variational learning1 (Yang,
2002), is a much-employed framework for explain-
ing language change (see e.g. Yang, 2000; Heycock
and Wallenberg, 2013; Simonenko et al., 2019).
In its usual application, the procedure is to define
a simple model of language acquisition, and then
to bootstrap a model of population-level linguistic
change from it. This is typically done by setting up
a discrete sequence of non-overlapping generations
of learners, assuming that the learning environment
for learners in each generation is constituted by the
average linguistic production of learners of the im-
mediately preceding generation, abstracting away
from stochastic fluctuations (cf. Andersen, 1973).

The dynamics of such a system are fully under-
stood in the case of two competing grammars; in
this special case, the population-level equation is a
replicator dynamic with a flat fitness landscape. As
a consequence, these systems are capable of two
types of behaviour only: either every population
state is a stable (albeit not asymptotically stable)
equilibrium, or a single asymptotically stable equi-
librium exists, attracting all non-equilibrium initial

1Not to be confused with the collection of methods known
as variational inference in Bayesian learning theory (MacKay,
2003).

states. Typically, the latter situation is the linguisti-
cally interesting one, implying that, over repeated
inter-generational interactions, one grammar ousts
the other. Which grammar wins depends on the
competing grammars’ relative advantages; these
can be estimated from corpora, enabling one to
empirically test the predictions made by the mathe-
matical model.

The linear reward–penalty learning scheme
(Bush and Mosteller, 1955) underlying the vari-
ational learner has a natural extension to 𝑛 actions—
in our case, to competition between an arbitrary
number 𝑛 of grammars. This extension has rarely
been employed, however, and its mathematics also
remain—apart from results concerning systems em-
bodying certain kinds of strong symmetries (Kauha-
nen, 2019)—unexplored.

Here, we study the general 𝑛-grammar model
in detail. We demonstrate that the population-
level equation is again a replicator dynamic, al-
though generically (whenever 𝑛 > 2) fitnesses are
frequency-dependent and nonlinear. Despite this,
certain crucial aspects of the dynamics remain char-
acterizable. In particular, we prove necessary and
sufficient conditions for the global asymptotic domi-
nance of a single grammar under 𝑛-way competition,
meaning that the population state corresponding
to total use of this grammar is an attractor for any
non-equilibrium initial state in which the grammar
has some non-zero abundance. In other words, we
provide an answer to the question: once a particular
grammatical change has been actuated (cf. Wein-
reich et al., 1968), under what conditions will it
proceed to completion? These conditions only ref-
erence pairwise advantages between grammars and
as such they generalize the well-known “fundamen-
tal theorem of language change” for two grammars
(Yang, 2000). Our results turn on the notion of the
resilience of a grammar, defined as the reciprocal
of the advantage that its competitor(s) hold(s) over
it.



The necessary and sufficient conditions for global
asymptotic dominance make available further re-
sults about the dynamics of grammar competition
between more than two grammars. As an illustra-
tion, we demonstrate how the sufficient condition
can alternatively be characterized using the notion
of grammatical flux, a measure of the tendency for
a grammar to lose abundance to its competitors in
a speech community.

2 Definitions
In the general case, we assume that the language
learner has access to 𝑛 grammars 𝐺1, . . . , 𝐺𝑛 and
attaches a weight𝑊𝑖 to each grammar 𝐺𝑖 (cf. Yang,
2002). The weights are assumed to form a cate-
gorical probability distribution over the grammars;
in other words, they must satisfy the following
conditions:2

1. 𝑊𝑖 ≥ 0 for all 𝑖

2.
∑

𝑖𝑊𝑖 = 1

Each weight is a random variable; together
they form the random probability vector W =
[𝑊1 . . .𝑊𝑛]𝑇 = (𝑊1, . . . ,𝑊𝑛). We note that W
is an element of Δ𝑛−1, the simplex

Δ𝑛−1 =
{
x = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛+ :

∑
𝑖 𝑥𝑖 = 1

}
.

Whenever no confusion can arise, Δ𝑛−1 will be
written as Δ for short. This set is partitioned into
its boundary

𝜕Δ = {x ∈ Δ : 𝑥𝑖 = 0 for some 𝑖}

and interior

Δ° = {x ∈ Δ : 𝑥𝑖 > 0 for all 𝑖}.

The boundary 𝜕Δ contains, in particular, the 𝑛
vertices, which are the standard basis vectors of R𝑛;
we denote these by e1 = (1, 0, . . . , 0) through to
e𝑛 = (0, . . . , 0, 1).

Additionally, for every non-empty subset of gram-
mar indices 𝐻 ⊆ {1, . . . , 𝑛}, we define Δ𝐻 as the
set of points x ∈ Δ in which 𝐺𝑖 has zero weight for
each 𝑖 ∉ 𝐻, in other words

Δ𝐻 = {x ∈ Δ : 𝑥𝑖 = 0 for all 𝑖 ∉ 𝐻}.
2Throughout this paper, missing bounds such as on a

summation (
∑
𝑖) are taken to imply that the index ranges from

1 to 𝑛, i.e. over all grammars. Further conditions on indices
will be explicitly indicated whenever necessary.

Equivalently, Δ𝐻 = Δ ∩ span{e𝑖 : 𝑖 ∈ 𝐻}. Intu-
itively, Δ𝐻 is the set of possible weight vectors
in which grammars outside the index set 𝐻 never
occur; it is itself an ( |𝐻 | − 1)-dimensional simplex.

Each grammar is assumed to accept a language,
understood as a set of grammatical expressions out
of all expressions it is possible to form using a
common alphabet Σ. In other words, to each 𝐺𝑖 we
attach a set 𝐿𝑖 satisfying 𝐿𝑖 ⊆ Σ∗ where Σ∗ is the
Kleene star (the infinite set of all finite sequences
of symbols from Σ). If 𝑠 ∈ 𝐿𝑖 (i.e. if 𝐺𝑖 accepts
the string 𝑠), we also express this as 𝐺𝑖 ⊢ 𝑠. The
complement of 𝐿𝑖 with respect to Σ∗ will be written
∁𝐿𝑖; for all 𝑠 ∈ ∁𝐿𝑖 , we have 𝐺𝑖 ⊬ 𝑠.

To each𝐺𝑖 , we attach a probability measure 𝜇𝑖 on
Σ∗ with support on 𝐿𝑖 , referred to as the grammar’s
associated production measure. For any 𝐾 ⊆ Σ∗,
𝜇𝑖 (𝐾) gives the probability of 𝐺𝑖 producing an
expression belonging to 𝐾. Whereas acceptance
(⊢) is a purely formal, grammatical property, pro-
duction (𝜇𝑖) may depend on both grammatical and
extra-grammatical factors, the latter including fac-
tors such as discourse constraints and performance
limitations.3

Expanding on Yang (2000), and following Kauha-
nen (2019), we adopt the following definition.
Definition 1. The quantity

𝑎𝑖 𝑗 = 𝜇 𝑗 (∁𝐿𝑖)

is called the (pairwise) advantage of grammar 𝐺 𝑗

over grammar 𝐺𝑖 .
In words, 𝑎𝑖 𝑗 is the probability of 𝐺 𝑗 producing a
string that 𝐺𝑖 does not accept. It is useful to collect
pairwise advantages in an 𝑛 × 𝑛 matrix 𝐴 = [𝑎𝑖 𝑗];
we refer to this as an advantage matrix. Note that
such matrices have zero diagonals: 𝑎𝑖𝑖 = 0 since,
by assumption, each production measure 𝜇𝑖 has no
support outside 𝐿𝑖 .

A learner operates in a learning environment,
which we take to be a probability measure on Σ∗

according to which sequences of expressions are
presented to the learner.
Definition 2. A learning environment is any prob-
ability measure 𝜇 on Σ∗.

3Construction of production measures is non-trivial. Under
traditional conceptions of grammar, the language 𝐿𝑖 gener-
ated by a grammar 𝐺𝑖 is typically a (countably) infinite set,
containing, among other things, expressions whose produc-
tion probabilities are practically indistinguishable from zero
(e.g. centre-embeddings to arbitrary depth). In practice, it
normally suffices to assume that 𝜇𝑖 has finite support. In any
case, these complexities need not concern us here, as long as
some well-posed probability measure 𝜇𝑖 exists for each 𝐺𝑖 .



Definition 3. The quantity

𝑐
𝜇

𝑖
= 𝜇(∁𝐿𝑖)

is referred to as the penalty probability of grammar
𝐺𝑖 in the environment 𝜇.
Whenever no confusion can arise, we drop the
measure 𝜇 from the notation and denote the penalty
probability of 𝐺𝑖 simply as 𝑐𝑖 .

Note that, on this definition, a learning environ-
ment is necessarily stationary, as it is associated
with a single, unchanging measure on Σ∗. In prac-
tice, this means we assume that each learner (in a
given generation of learners) is exposed to a con-
stant set of penalty probabilities for the competing
grammars over the duration of learning.

An important distinction exists between learning
environments that punish each grammar at least
some of the time, and environments which never
punish some grammar(s). In order to have termi-
nology for these, we define:
Definition 4. A learning environment is omnipuni-
tive if 𝑐𝑖 > 0 for all 𝑖. If this is not the case (i.e. if
𝑐𝑖 = 0 for at least one 𝑖), the learning environment
is parapunitive.

Now assume the learner receives an infinite ran-
dom sequence of expressions 𝑠1, 𝑠2, 𝑠3, . . . ∈ Σ∗

according to such a 𝜇. Upon reception of 𝑠𝑚, the
learner samples a grammar to employ according
to the current value of W (i.e. 𝐺𝑖 is chosen with
probability𝑊𝑖). Suppose this grammar is 𝐺𝑘 . The
learner then checks whether 𝐺𝑘 ⊢ 𝑠𝑚 and, based
on this result, applies one or another operator to
W to transform it to its new value, W′.4 This
amounts to assuming the existence of 𝑛 reward
operators 𝑢+

𝑖
: Δ → Δ and 𝑛 punishment operators

𝑢−
𝑖

: Δ → Δ and setting

W′ =

{
𝑢+
𝑘
(W) if 𝐺𝑘 ⊢ 𝑠𝑚

𝑢−
𝑘
(W) if 𝐺𝑘 ⊬ 𝑠𝑚

(1)

The learner then receives the next expression in the
sequence (𝑠𝑚+1), and the cycle continues.

The central learning-theoretic challenge concerns
whether W converges in some relevant sense as
learning continues, based on particular choices for
the reward (𝑢+

𝑖
) and punishment (𝑢−

𝑖
) operators,

subject to a given learning environment 𝜇. Conver-
gence results exist for a number of choices of these

4Throughout this paper, we use the notation 𝑥′ for the
successor of 𝑥.

operators (see Bush and Mosteller, 1955; Norman,
1972; Narendra and Thathachar, 1989); in what
follows, we will make use of these results in order
to study a deterministic approximation, or mean
dynamic (Sandholm, 2010), of the population-level
evolution of a sequence of generations of such
learners.

To obtain the population-level mean dynamic, we
first need to obtain a mean dynamic that expresses
how the expected value of the learner’s weight
vector, W = E[W], evolves. In general, from (1)
we have that

𝑊
′
𝑖 =

∑︁
𝑗

𝑊 𝑗

(
𝑐 𝑗𝑢

−
𝑗 (W)𝑖 + (1 − 𝑐 𝑗)𝑢+𝑗 (W)𝑖

)
.

Taking expectations on both sides, this becomes

𝑊
′
𝑖 =

∑︁
𝑗

𝑊 𝑗

(
𝑐 𝑗𝑢

−
𝑗 (W)𝑖 + (1 − 𝑐 𝑗)𝑢+𝑗 (W)𝑖

)
. (2)

In the following sections, the operators {𝑢+
𝑖
, 𝑢−

𝑖
}

will be given particular forms and the resulting
mean dynamic studied in detail.

Passage to the population-level mean dynamic
then follows via one (or both) of two routes. One
can either assume that learning is so slow (but con-
tinued for long enough) that stochastic fluctuations
inherent in the learning process affect the learner’s
eventual weight vector W only to an insignificant
extent: the actual value of W stays close to its
expected value, W (see Norman, 1972; Narendra
and Thathachar, 1989). Alternatively (or addition-
ally), one can assume that the learners in each
generation randomly sample input from an infinite
population of independent, identically distributed
learners in the previous generation; adherence to
the population-level mean dynamic then follows
by the Law of Large Numbers (cf. Niyogi, 2006).
Taking either of these limits (learning rate to zero,
or population size to infinity) recovers the same
mean dynamic that relates the competing grammars’
abundances from one generation to the next.

3 Linear Reward–Penalty Learning of
Two Grammars

In the classical two-action learning problem
(i.e. when 𝑛 = 2), it has been customary ever since
Bush and Mosteller (1955) to employ the linear
map described by the matrix

𝑈+
1 =

[
1 𝛾
0 1 − 𝛾

]



for the reward operator 𝑢+1 , meaning that

𝑢+1 (W) = 𝑈+
1 W =

[
𝑊1 + 𝛾𝑊2
𝑊2 − 𝛾𝑊2

]
.

To punish 𝐺1, the matrix

𝑈−
1 =

[
1 − 𝛾 0
𝛾 1

]

is used, so that

𝑢−1 (W) =
[
1 − 𝛾 0
𝛾 1

] [
𝑊1
𝑊2

]
=

[
𝑊1 − 𝛾𝑊1
𝑊2 + 𝛾𝑊1

]
.

The corresponding matrices for rewarding and pun-
ishing 𝐺2 are obtained as row permutations of𝑈+

1
and𝑈−

1 :

𝑈+
2 =

[
0 1 − 𝛾
1 𝛾

]
and 𝑈−

2 =

[
𝛾 1

1 − 𝛾 0

]
.

In each of these formulae, 0 < 𝛾 < 1 is a parameter
that sets the learning rate; note we assume that the
same learning rate applies to each operator.

Suppose that at least one of the penalty probabil-
ities 𝑐1 and 𝑐2 is strictly positive. Then it is well
known (see Bush and Mosteller, 1955; Narendra
and Thathachar, 1989) that the expected value W
tends to

W∗
=

(
𝑐2

𝑐1 + 𝑐2
,

𝑐1
𝑐1 + 𝑐2

)
(3)

with increasing learning iteration. In other words,
W∗ is the (unique) fixed point of the learner’s mean
dynamic in this case.

Suppose we have a generation of learners, all
exposed to the same learning environment, and
sample a learner at random from this population.
What is the probability that this learner employs𝐺1?
Since all learners are assumed to operate in the same
learning environment, this probability is identical
to the probability of a single learner employing 𝐺1
which, in turn, is just the expected value W∗. To
avoid a proliferation of complex notation, and also
to consistently distinguish between the individual
and population levels, in what follows we will write
𝑥𝑖 for the probability of encountering an individual
employing grammar𝐺𝑖 , and call this the abundance
of 𝐺𝑖 . The abundances can be collected in a vector,
x = (𝑥1, . . . , 𝑥𝑛); of course, x ∈ Δ.

At the population level, the probability measure
𝜇 which defines the learning environment can be

decomposed into the individual production mea-
sures of the competing grammars. Specifically, for
any 𝐾 ⊆ Σ∗,

𝜇(𝐾) = 𝑥1𝜇1(𝐾) + 𝑥2𝜇2(𝐾).

In other words, the probability of encountering a
string 𝑠 ∈ 𝐾 equals the probability of meeting a
speaker employing 𝐺1 and this speaker producing
𝑠 ∈ 𝐾, plus the probability of meeting a speaker
employing 𝐺2 and this speaker producing 𝑠 ∈ 𝐾.
By the definition of penalty probability, we then
have {

𝑐1 = 𝜇(∁𝐿1) = 𝑥2𝜇2(∁𝐿1) = 𝑎12𝑥2,

𝑐2 = 𝜇(∁𝐿2) = 𝑥1𝜇1(∁𝐿2) = 𝑎21𝑥1.

By (3), a learner in such an environment will tend
to converge to

(𝑊∗
1,𝑊

∗
2) =

(
𝑎21𝑥1

𝑎12𝑥2 + 𝑎21𝑥1
,

𝑎12𝑥2
𝑎12𝑥2 + 𝑎21𝑥1

)
.

Assuming a discrete sequence of generations of
this kind, we thus have the following deterministic
difference equation for the abundances of the two
grammars in the population:



𝑥′1 =

𝑎21𝑥1
𝑎12𝑥2 + 𝑎21𝑥1

𝑥′2 =
𝑎12𝑥2

𝑎12𝑥2 + 𝑎21𝑥1

Since 𝑥1 + 𝑥2 = 1, it of course suffices to track
the evolution of 𝑥 = 𝑥1 only, whereby we have the
simple expression

𝑥′ =
𝑎21
𝛼(𝑥) 𝑥, (4)

where
𝛼(𝑥) = 𝑎12(1 − 𝑥) + 𝑎21𝑥

denotes average advantage.
Equation (4) is a discrete-time constant-fitness

Maynard Smith replicator dynamic (cf. Sandholm,
2010). As such, its behaviour is extremely simple.
Outside of the case of a symmetric advantage matrix
(𝑎12 = 𝑎21), in which case every 𝑥 ∈ [0, 1] is a
fixed point, the system has a single asymptotically
stable equilibrium that attracts from any initial state
0 < 𝑥 < 1. If 𝑎21 > 𝑎12, this equilibrium is 𝑥 = 1;
if 𝑎21 < 𝑎12, it is 𝑥 = 0.5 This is summarized in:
Theorem 1 (Yang, 2000). When 𝑛 = 2, the gram-
mar with the greater advantage wins.

5We do not concern ourselves with the pathological case
𝑎12 = 𝑎21 = 0 in which neither grammar ever produces output
that its competitor cannot parse, i.e. in which the grammars
are extensionally equivalent.



4 Linear Reward–Penalty Learning of 𝑛
Grammars

We now turn to the general case of 𝑛 competing
grammars, where Bush and Mosteller’s (1955) lin-
ear scheme takes the following form. Suppose 𝐺𝑘

is the grammar selected by the learner for input se-
quence 𝑠𝑚. Then, the grammar weights are updated
as follows:6

if 𝐺𝑘 ⊢ 𝑠𝑚:

{
𝑊 ′

𝑘
= (1 − 𝛾)𝑊𝑘 + 𝛾

𝑊 ′
𝑖
= (1 − 𝛾)𝑊𝑖 (𝑖 ≠ 𝑘)

if 𝐺𝑘 ⊬ 𝑠𝑚:

{
𝑊 ′

𝑘
= (1 − 𝛾)𝑊𝑘

𝑊 ′
𝑖
= (1 − 𝛾)𝑊𝑖 + 𝛾

𝑛−1 (𝑖 ≠ 𝑘)

(5)

To characterize a learner’s behaviour under this
learning algorithm, we focus on the expected weight
vector W = E[W]. With the operators (5), it can
be checked that the learner’s mean dynamic (2)
simplifies to

𝑊
′
𝑖 = (1 − 𝛾𝑐𝑖)𝑊 𝑖 +

∑︁
𝑗≠𝑖

𝛾

𝑛 − 1
𝑐 𝑗𝑊 𝑗 .

In other words, we may write

W′
= 𝐵W, (6)

where 𝐵 = [𝑏𝑖 𝑗] is the 𝑛 × 𝑛 square matrix with

𝑏𝑖 𝑗 =

{
1 − 𝛾𝑐𝑖 if 𝑖 = 𝑗 ,
𝛾

𝑛−1𝑐 𝑗 if 𝑖 ≠ 𝑗 .

Generically, W evolves to a limit whose value
can be obtained by solving the system of equa-
tions 𝐵W = W. In an omnipunitive environment
(i.e. 𝑐𝑖 > 0 for all 𝑖), this system of equations has
the unique solution W = (𝑐−1

1 /𝐶, . . . , 𝑐−1
𝑛 /𝐶) with

6Just as in the two-grammar case, this definition gives rise
to a set of linear operators. To see this, notice that the first
equation, for instance, can be rewritten as

𝑊 ′
𝑘
= 𝑊𝑘 + 𝛾(1 −𝑊𝑘) = 𝑊𝑘 + 𝛾

∑
𝑖≠𝑘𝑊𝑖

so that𝑊 ′
𝑘

is found to be a linear combination of𝑊1, . . . ,𝑊𝑛.
In fact, if 𝐼 denotes the 𝑛 × 𝑛 identity matrix (i.e. 𝐼 has 1 in
each diagonal cell and 0 in each non-diagonal cell), 𝐽 denotes
the 𝑛 × 𝑛 matrix of ones (i.e. 𝐽 has 1 in each cell), and 𝐸𝑘𝑘

denotes the matrix unit (i.e. 𝐸𝑘𝑘 has a 1 in cell (𝑘, 𝑘) and
is 0 elsewhere), then the learning operators can be written
concisely as the following matrices:



𝑈+
𝑘
= (1 − 𝛾)𝐼 + 𝛾𝐸𝑘𝑘𝐽

𝑈−
𝑘
= (1 − 𝛾)𝐼 + 𝛾

𝑛 − 1
(𝐽 − 𝐸𝑘𝑘𝐽)

𝐶 =
∑

𝑖 𝑐
−1
𝑖

(Bush and Mosteller, 1955; Narendra
and Thathachar, 1989).7 The following result gener-
alizes this to also cover parapunitive environments.
Theorem 2. If the learning environment is om-
nipunitive, then

W∗
=

(
𝑐−1

1∑
𝑖 𝑐

−1
𝑖

, . . . ,
𝑐−1
𝑛∑
𝑖 𝑐

−1
𝑖

)

is the only fixed point of the learner’s mean dynamic
(6).

If it is parapunitive so that 𝑐𝑖 = 0 for 𝑖 ∈ 𝐻0,
then all W ∈ Δ𝐻0 are fixed points.

Proof. First suppose the environment is omnipuni-
tive. Then 𝑐𝑖 > 0 for all 𝑖, and so the matrix 𝐵
is both positive and column-stochastic. By the
Perron–Frobenius Theorem, there is then a unique
stationary W that satisfies the equilibrium condition
W = 𝐵W. It is quick to check that the W∗ stated
in the theorem satisfies it.

Then suppose the environment is parapunitive.
We begin by showing that a W that satisfies the
conditions stated in the theorem is a fixed point of
the mean dynamic. We have

𝑊
′
𝑖−𝑊 𝑖 = −𝛾𝑐𝑖𝑊 𝑖+

∑︁
𝑗≠𝑖
𝑗∈𝐻0

𝛾𝑐 𝑗

𝑛 − 1
𝑊 𝑗+

∑︁
𝑗≠𝑖
𝑗∉𝐻0

𝛾𝑐 𝑗

𝑛 − 1
𝑊 𝑗 .

On the right hand side, the second term is zero
since all the 𝑐 𝑗 are zero (since 𝑗 ∈ 𝐻0), and the
third term is zero because all the𝑊 𝑗 are zero (since
𝑗 ∉ 𝐻0). Hence

𝑊
′
𝑖 −𝑊 𝑖 = −𝛾𝑐𝑖𝑊 𝑖 .

Now, if 𝑖 ∈ 𝐻0, then 𝑐𝑖 = 0 and so 𝑊 ′
𝑖 −𝑊 𝑖 = 0,

and we are done. On the other hand, if 𝑖 ∉ 𝐻0, then
𝑊 𝑖 = 0 and again𝑊 ′

𝑖 −𝑊 𝑖 = 0.
To see that the assumed form of W is necessary,

suppose 𝑖 ∈ 𝐻0. Then 𝑐𝑖 = 0, and so

𝑊
′
𝑖 −𝑊 𝑖 =

∑︁
𝑗≠𝑖
𝑗∉𝐻0

𝛾

𝑛 − 1
𝑐 𝑗𝑊 𝑗 .

In the summation, we have 𝑐 𝑗 > 0 since 𝑗 ∉ 𝐻0.
Hence, if we had𝑊 𝑗 > 0 for even one 𝑗 , we would
obtain that 𝑊 ′

𝑖 −𝑊 𝑖 ≠ 0. Hence, we must have
𝑊 𝑗 = 0 for all 𝑗 ∉ 𝐻0, and so W ∈ Δ𝐻0 . □

7Note that (3) is a special case: we have

𝑊1 =
𝑐−1

1
𝑐−1

1 + 𝑐−1
2

=
𝑐1𝑐2𝑐

−1
1

𝑐1𝑐2 (𝑐−1
1 + 𝑐−1

2 )
=

𝑐2
𝑐2 + 𝑐1

and similarly for𝑊2.



Corollary 1. If the learning environment is para-
punitive with 𝑐𝑘 = 0 for a unique 𝑘 , then W tends
to the vertex e𝑘 .

Proof. This follows because Δ{𝑘} is a singleton:
Δ{𝑘} = Δ ∩ span{e𝑘} = {e𝑘}. □

See Figure 1 for illustration.
Moving to the population level, we note that the

learning environment 𝜇 again decomposes: for any
𝐾 ⊆ Σ∗, we have

𝜇(𝐾) =
∑︁
𝑗

𝑥 𝑗𝜇 𝑗 (𝐾).

Hence

𝑐𝑖 = 𝜇(∁𝐿𝑖) =
∑︁
𝑗

𝑥 𝑗𝜇 𝑗 (∁𝐿𝑖) =
∑︁
𝑗

𝑎𝑖 𝑗𝑥 𝑗 ,

and so the penalty probabilities are linear combi-
nations of the grammar abundances. Assuming as
before a discrete sequence of infinite generations,
we have

𝑥′𝑖 =
𝑐−1
𝑖∑
𝑗 𝑐

−1
𝑗

if 𝑐𝑖 > 0 for all 𝑖, i.e. if the learning environment is
omnipunitive at the population state x. As will be
explained in the following section, this is usually
the case.

In particular, if omnipunitivity holds, then in
the interior Δ° (i.e. when 𝑥𝑖 > 0 for all 𝑖), the
above equation may be expressed in more familiar
terms: multiplying the numerator by 𝑥−1

𝑖
𝑥𝑖 and each

summand in the denominator by 𝑥−1
𝑗
𝑥 𝑗 , we obtain

𝑥′𝑖 =
𝑥−1
𝑖
𝑐−1
𝑖∑

𝑗 𝑥 𝑗𝑥
−1
𝑗
𝑐−1
𝑗

𝑥𝑖 =
𝑓𝑖 (x)∑

𝑗 𝑥 𝑗 𝑓 𝑗 (x)
𝑥𝑖 ,

i.e.
𝑥′𝑖 =

𝑓𝑖 (x)
𝜑(x) 𝑥𝑖 ,

where

𝑓𝑖 (x) = 𝑥−1
𝑖 𝑐−1

𝑖 =
1∑

𝑗 𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗

supplies the fitness of grammar𝐺𝑖 in the population
state x, and

𝜑(x) =
∑︁
𝑗

𝑥 𝑗 𝑓 𝑗 (x)

is average fitness. This shows that the system is
again characterized by a replicator dynamic, albeit

e3

e2

e1

(a) 

𝑐1 = 0.2
𝑐2 = 0.3
𝑐3 = 0.6

e3

e2

e1

(b) 

𝑐1 = 0
𝑐2 = 0
𝑐3 = 0.6

e3

e2

e1

(c) 

𝑐1 = 0
𝑐2 = 0.3
𝑐3 = 0.6

Figure 1: Learning in an omnipunitive (a) and two para-
punitive (b, c) environments. Three learning trajectories
are simulated in each case, starting from different initial
states W. In each case, the learning rate was set at
𝛾 = 0.001. The light thick lines show the corresponding
mean dynamics.



in this more general case, fitness is frequency-
dependent rather than constant. Note that the prod-
uct 𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗 may be interpreted as the amount of
motion away from grammar 𝐺𝑖 in the direction of
grammar 𝐺 𝑗 , explaining the appearance of these
terms in the denominator of 𝑓𝑖 (x).

5 Global Asymptotic Dominance in
𝑛-grammar Competition

In the two-grammar case, Theorem 1 supplies a
necessary and sufficient condition for one grammar
to be an attractor. We now ask if a corresponding
condition can be found in the more general case
of 𝑛-grammar competition. The abundance vector
x, describing the abundances of the 𝑛 grammars
in a given generation of learners, belongs to the
simplex Δ = Δ𝑛−1. At each vertex e𝑘 ∈ Δ of the
simplex, one grammar claims all the abundance,
and we define:
Definition 5. Grammar 𝐺𝑘 is dominant if e𝑘 is an
equilibrium. It is asymptotically dominant if e𝑘 is
asymptotically stable. It is globally asymptotically
dominant—abbreviated g.a.d.—if e𝑘 is an attractor
for any non-equilibrium initial state x ∈ Δ with
𝑥𝑘 > 0.
Clearly, Theorem 1 implies that, in the 𝑛 = 2
case, 𝐺𝑘 is g.a.d if and only if 𝑎𝑖𝑘 > 𝑎𝑘𝑖. The
restriction to initial states that satisfy 𝑥𝑘 > 0 is a
technicality which will be required in some of the
proofs below; note that this assumption is innocuous
since, empirically, convergence to a grammar can
only occur after an innovation in the direction of
this grammar has happened.

We moreover define:
Definition 6. Grammar 𝐺𝑖 is vulnerable to gram-
mar 𝐺 𝑗 if 𝑎𝑖 𝑗 > 0. Grammar 𝐺 𝑗 is non-submissive
if every other grammar 𝐺𝑖 is vulnerable to it.
We then have the following result:
Theorem 3. 𝐺𝑘 is dominant only if it is non-
submissive.

Proof. Suppose 𝐺𝑘 is not non-submissive. Then
some 𝐺𝑖 exists such that 𝑎𝑖𝑘 = 0. At the vertex e𝑘 ,
the penalty for this grammar 𝐺𝑖 is

𝑐𝑖 = 𝑎𝑖𝑘𝑥𝑘 = 𝑎𝑖𝑘 = 0.

Hence, 𝐺𝑘 is not the only zero-penalty grammar,
and so, by Theorem 2, W does not generically
converge to the vertex e𝑘 . In other words, in an en-
vironment in which only 𝐺𝑘 is employed, a learner

does not acquire full use of 𝐺𝑘 . This implies that
e𝑘 is not an equilibrium and hence that 𝐺𝑘 is not
dominant. □

As an immediate consequence, we obtain that a
non-submissive grammar cannot be globally asymp-
totically dominant:
Corollary 2. 𝐺𝑘 is g.a.d. only if it is non-
submissive.

In particular, the above results imply that no
grammar 𝐺𝑖 that stands in a subset relation to
another grammar 𝐺 𝑗 , in the sense that 𝐿𝑖 ⊆ 𝐿 𝑗 ,
can be (globally asymptotically) dominant.
Corollary 3. Suppose 𝐿𝑖 ⊆ 𝐿 𝑗 . Then 𝐺𝑖 is not
(globally asymptotically) dominant.

Proof. 𝐿𝑖 ⊆ 𝐿 𝑗 implies that 𝑎 𝑗𝑖 = 0. Hence
𝐺 𝑗 is not vulnerable to 𝐺𝑖 and so 𝐺𝑖 is not non-
submissive. □

On the other hand, suppose a grammar𝐺𝑘 is non-
submissive and that 𝑎𝑘𝑖 = 0 for all 𝑖 ≠ 𝑘 . In this
case, 𝐺𝑘 is vulnerable to none of its competitors,
while each of the latter is vulnerable to 𝐺𝑘 . Let
us call such a grammar apical (it is located at the
“apex” of the competition situation).
Definition 7. Grammar 𝐺𝑘 is apical if it is not
vulnerable to any of its competitors but all its
competitors are vulnerable to it.
An apical grammar is necessarily g.a.d.:
Theorem 4. If 𝐺𝑘 is apical, it is g.a.d.

Proof. Let x ∈ Δ such that 𝑥𝑘 > 0. For all gram-
mars 𝐺𝑖 with 𝑖 ≠ 𝑘 , the penalty is

𝑐𝑖 =
∑︁
𝑗

𝑎𝑖 𝑗𝑥 𝑗 ≥ 𝑎𝑖𝑘𝑥𝑘 > 0.

For 𝐺𝑘 , the penalty is

𝑐𝑘 =
∑︁
𝑗

𝑎𝑘 𝑗𝑥 𝑗 = 0

on the assumption of apicality. Hence, by Theorem
2, 𝐺𝑘 is g.a.d. (In fact, in this case, the vertex e𝑘 is
attained in one generation of learning.) □

We now continue to look for a general criterion
for global asymptotic dominance. With the above
results in mind, we can assume without loss of
generality that a putative g.a.d. grammar𝐺𝑘 is both
non-submissive (since if it were not non-submissive,
it could not be g.a.d.) and non-apical (since if it
were apical, it would necessarily be g.a.d.). On



the assumption that 𝐺𝑘 is non-submissive, we have
𝑎𝑖𝑘 > 0 for all 𝑖 ≠ 𝑘 . Hence, whenever 𝑥𝑘 > 0, we
have

𝑐𝑖 =
∑︁
𝑗

𝑎𝑖 𝑗𝑥 𝑗 ≥ 𝑎𝑖𝑘𝑥𝑘 > 0.

On the other hand, since 𝐺𝑘 is not apical, we have
𝑎𝑘𝑖 > 0 for at least one 𝑖 ≠ 𝑘 , whereby

𝑐𝑘 =
∑︁
𝑗

𝑎𝑘 𝑗𝑥 𝑗 ≥ 𝑎𝑘𝑖𝑥𝑖 > 0

whenever 𝑥𝑖 > 0. Hence, at least in the interior
Δ°, every grammar has non-zero penalty, and so
the learning environment is omnipunitive in all of
the interior. Therefore, we have the well-posed
population mean dynamic

𝑥′𝑖 =
𝑓𝑖 (x)
𝜑(x) 𝑥𝑖

with
𝑓𝑖 (x) =

1∑
𝑗 𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗

and 𝜑(x) = ∑
𝑗 𝑥 𝑗 𝑓 𝑗 (x). By the following result,

we can also assume without loss of any generality
that the initial state x lies in the interior:
Lemma 1. Suppose x ∈ 𝜕Δ with 𝑥𝑘 > 0 and that
𝐺𝑘 is non-submissive. Then either W converges to
some point in the interior Δ° or it converges to the
vertex e𝑘 .

Proof. For any 𝑖 ≠ 𝑘 , we have

𝑐𝑖 =
∑︁
𝑗

𝑎𝑖 𝑗𝑥 𝑗 ≥ 𝑎𝑖𝑘𝑥𝑘 > 0

on the assumption that 𝐺𝑘 is non-submissive. Now,
either 𝑐𝑘 > 0 or 𝑐𝑘 = 0. In the former case, every
penalty probability is non-zero and so the learning
environment is omnipunitive. By Theorem 2, W
converges to W∗

= 𝑐−1
𝑖
/∑ 𝑗 𝑐

−1
𝑗

∈ Δ°.
Then suppose 𝑐𝑘 = 0. In this case, Corollary 1

implies that W converges to the vertex e𝑘 . □

We now ask under what conditions trajecto-
ries starting at x ∈ Δ° converge to e𝑘 , so that
𝐺𝑘 is g.a.d. (assuming, as above, that 𝐺𝑘 is non-
submissive and not apical). We define:
Definition 8. The resilience of grammar𝐺𝑖 against
grammar𝐺 𝑗 is 𝑟 𝑗𝑖 = 1/𝑎𝑖 𝑗 , the inverse of the advan-
tage that 𝐺 𝑗 holds over 𝐺𝑖 . The total resilience of
grammar 𝐺𝑖 (against all its competitors) is defined
as

𝑅𝑖 =
1∑
𝑗 𝑎𝑖 𝑗

,

the inverse of the cumulative advantage against 𝐺𝑖 .

Of course, the resilience 𝑟 𝑗𝑖 is only defined if
𝑎𝑖 𝑗 > 0, i.e. only if 𝐺𝑖 is vulnerable to 𝐺 𝑗 . In
consequence, the total resilience 𝑅𝑖 is only defined
if 𝐺𝑖 is vulnerable to at least one other 𝐺 𝑗 . Since
a putative g.a.d. grammar 𝐺𝑘 is assumed to be
non-submissive and non-apical, the total resilience
𝑅𝑖 is defined for all 𝑖, and the pairwise resiliences
𝑟𝑘𝑖 also exist for all 𝑖.

We point out that (total) resilience measures how
robust a grammar 𝐺𝑖 is against its competitor(s),
i.e. it only references the advantage(s) of the latter
over 𝐺𝑖 , and not the advantage that 𝐺𝑖 itself holds
over its competitor(s).

We can now state our two main results. The first
gives a sufficient condition for a grammar’s global
asymptotic dominance; the second, a necessary one.
The proofs, which are tedious, are relegated to the
Appendix.

Theorem 5. Grammar 𝐺𝑘 is g.a.d. if

𝑅𝑘 >
∑︁
𝑖≠𝑘

𝑟𝑘𝑖

i.e. if its total resilience is greater than the sum of
pairwise resiliences against it.

Theorem 6. Grammar 𝐺𝑘 is g.a.d. only if

𝑅𝑘 >
1

𝑛 − 1

∑︁
𝑖≠𝑘

𝑅𝑖

i.e. only if its total resilience is greater than the
average total resilience across its competitors.

6 Grammar Flux

Theorem 5 enables an alternative characterization
of sufficient conditions for a grammar’s being g.a.d.
This turns on the notion of a chain of grammars
and its associated flux.

Definition 9. A chain of grammars is any triple
(𝐺𝑖 , 𝐺𝑘 , 𝐺 𝑗) such that 𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑘 (but possi-
bly 𝑖 = 𝑗). We denote this by 𝐶𝑖𝑘 𝑗 = (𝐺𝑖 , 𝐺𝑘 , 𝐺 𝑗).
A chain traverses grammar 𝐺𝑘 if 𝐺𝑘 is in the mid-
dle position of the chain. The set of chains through
𝐺𝑘 is the set of all chains that traverse 𝐺𝑘 .

Definition 10. The flux through a chain of gram-
mars 𝐶𝑖𝑘 𝑗 is defined as the ratio

𝜑(𝐶𝑖𝑘 𝑗) =
𝑎𝑘 𝑗

𝑎𝑖𝑘

whenever 𝑎𝑖𝑘 > 0.
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Figure 2: The total flux through grammar 𝐺𝑘 , Φ(𝐺𝑘),
is defined by adding together the fluxes over all chains
that traverse 𝐺𝑘 .

If we can imagine abundance as “flowing” from
one grammar to another, then 𝜑(𝐶𝑖𝑘 𝑗) measures
how much abundance, obtained from 𝐺𝑖 , grammar
𝐺𝑘 lets flow through to 𝐺 𝑗 . The better 𝐺𝑘 is at
resisting losing advantage to 𝐺 𝑗 under “pressure”
from (advantage flowing from) 𝐺𝑖, the lower the
flux.

We further define (cf. Figure 2):
Definition 11. The total flux through grammar 𝐺𝑘 ,
denoted Φ(𝐺𝑘), is the sum of fluxes over all chains
through 𝐺𝑘 , i.e. the quantity

Φ(𝐺𝑘) =
∑︁
𝑖≠𝑘

∑︁
𝑗≠𝑘

𝜑(𝐶𝑖𝑘 𝑗).

A sufficient condition for g.a.d. is then the follow-
ing: the total flux through a grammar is bounded
from above by one.
Theorem 7. Grammar 𝐺𝑘 is g.a.d. if Φ(𝐺𝑘) < 1.

Proof. By Theorem 5, 𝐺𝑘 is g.a.d. if

1∑
𝑗 𝑎𝑘 𝑗

>
∑︁
𝑖≠𝑘

1
𝑎𝑖𝑘

.

Since 𝑎𝑘𝑘 = 0, this is equivalent to

1∑
𝑗≠𝑘 𝑎𝑘 𝑗

>
∑︁
𝑖≠𝑘

1
𝑎𝑖𝑘

.

Multiplying both sides by
∑

𝑗≠𝑘 𝑎𝑘 𝑗 , we obtain

1 >
∑︁
𝑗≠𝑘

𝑎𝑘 𝑗
∑︁
𝑖≠𝑘

1
𝑎𝑖𝑘

=
∑︁
𝑗≠𝑘

∑︁
𝑖≠𝑘

𝑎𝑘 𝑗

𝑎𝑖𝑘
= Φ(𝐺𝑘)

as wished. □

A loose analogy exists between the notion of
grammar flux and elementary properties of elec-
tronic circuits that may assist in the former’s inter-
pretation. By Ohm’s Law, the current passed by a

component, 𝐼, equals the voltage applied to the com-
ponent, 𝑉 , divided by its resistance, 𝑅. From this,
one obtains 𝑅−1 = 𝐼/𝑉 , where 𝑅−1, the inverse of
resistance, measures the component’s conductance,
i.e. how many units of current it passes per unit
of voltage applied. The flux through a grammar—
even though a dimensionless number—similarly
measures how much abundance a grammar “leaks”
under the pressure of abundance flowing into it;
Theorem 7 shows that, in order for a grammar to be
globally asymptotically dominant, it is enough for
this grammar to be a sufficiently poor conductor of
abundance.

7 Discussion
We have studied the inter-generational dynamics of
the general 𝑛-grammar variational learning model,
asking the following question: under what condi-
tions is a single grammar globally asymptotically
dominant (g.a.d.), meaning that this grammar at-
tracts from any non-equilibrium initial state once
the grammar has been innovated? We have proved
two main results, each turning on the notion of a
grammar’s resilience. The first result gives a suffi-
cient condition, stating that grammar 𝐺𝑘 is g.a.d. if
its total resilience is greater than the cumulative
pairwise resiliences of its competitors,

𝑅𝑘 >
∑︁
𝑖≠𝑘

𝑟𝑘𝑖 .

The second result gives a necessary condition, and
states that if 𝐺𝑘 is g.a.d., then necessarily

𝑅𝑘 >
1

𝑛 − 1

∑︁
𝑖≠𝑘

𝑅𝑖 ,

i.e. the total resilience of 𝐺𝑘 is greater than the
average total resilience computed over all its com-
petitors. An alternative characterization by way of
the notion of the flux through a grammar found that
the sufficient condition is equivalent to Φ(𝐺𝑘) < 1,
which states that the total flux through 𝐺𝑘 is
bounded from above by 1.

These results may now be applied to empirical
data to evaluate the merits of this particular model
of language acquisition and language change. The
estimation of advantage parameters from corpora is
by now commonplace in the two-grammar special
case (e.g. Yang, 2000; Heycock and Wallenberg,
2013; Simonenko et al., 2019). In principle, es-
timation of such parameters in multidimensional
competition is no different, although it is more
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Figure 3: Necessary and sufficient bounds on 𝑅𝑘 for
grammar 𝐺𝑘 to be globally asymptotically dominant.

laborious due to the greater number of pairwise
comparisons required. The sufficient condition for
global asymptotic dominance may then be used
to predict whether a given set of estimates for the
𝑎𝑖 𝑗 parameters (a particular advantage matrix 𝐴)
leads to eventual dominance by one grammar. Con-
versely, the necessary condition may be used to
argue that a particular choice of 𝐴 could never lead
to a grammar’s being g.a.d. In practice, application
of the sufficient condition for purposes of arguing
for a grammar’s g.a.d. status may be more useful
than using the necessary condition to argue against
a grammar’s g.a.d. status—a particular advantage
matrix may fail the necessary condition, and hence
imply that a grammar is not formally g.a.d., yet the
system’s stable equilibrium may still be arbitrar-
ily close to the vertex representing full use of this
grammar.

The sufficient and necessary conditions of global
asymptotic dominance reference the competing
grammars’ pairwise and total resiliences; in partic-
ular, both give a lower bound for the total resilience
𝑅𝑘 of a candidate grammar. It is important to point
out that the bounds for 𝑅𝑘 established here do not
coincide (except in the special case 𝑛 = 2). In other
words, a region exists in which mere examination of
the magnitude of 𝑅𝑘 does not (yet) tell us whether
𝐺𝑘 is g.a.d. or not (see Figure 3). This is because
the proofs of Theorems 5–6 rely on simple bounding
arguments; in particular, the proof of the sufficient
condition in fact establishes the stronger claim that
convergence to dominance is strictly monotonic, in
the sense that the abundance of the g.a.d. grammar
always increases. If a trajectory converging on a
vertex is non-monotonic, this is not captured by
Theorem 5. Future work should thus look for a
more complete characterization of the conditions
under which convergence to the vertices occurs.

These results were obtained for a particular model
of language change obtained from a particular
model of language learning through a particular
set of assumptions. We have assumed a discrete
sequence of non-overlapping generations, each of

which consists of infinitely many well-mixing, iden-
tically learning speakers. In other words, we have
only studied the deterministic limit in which the
system’s mean dynamic is a faithful description of
the system’s evolution. Any of these simplifying
assumptions could in principle be lifted, resulting
in a stochastic process also at the inter-generational
population level.

On the other hand, ample possibilities exist for
future work even in the deterministic limit. We
have here assumed, with tradition, that the pairwise
advantages 𝑎𝑖 𝑗 remain constant for the duration of
any evolutionary process we may be interested in
observing and modelling. This is not necessarily
so in the real world. Interesting extensions of
the model occur when the 𝑎𝑖 𝑗 are allowed to be
frequency-dependent, i.e. to depend on the current
abundance vector x obtaining in the population.
These await formal study.

Finally, we point out that the operators in (5) are
but one out of many possible ways of generalizing
the two-grammar learning algorithm for 𝑛 > 2
grammars. In particular, this choice of operators
implies that, whenever a grammar is punished, then
all remaining 𝑛 − 1 grammars are rewarded. Yet
this is clearly not a necessary feature of a model
of language learning, and may not be particularly
realistic. An alternative model might equip the
learner with a short-term memory, which would
be used to reward only grammars employed by the
learner in the very near past, for example. The
effects such modifications have on the population-
level evolution remain to be studied.
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A Proofs
Proof of Theorem 5. Let x ∈ Δ°. We look for a
condition under which 𝑥′

𝑘
> 𝑥𝑘 . If this holds for

arbitrary x ∈ Δ°, then 𝑥𝑘 increases in the entire
interior of the simplex, which suffices to show that
𝐺𝑘 is g.a.d.

Now, 𝑥′
𝑘
> 𝑥𝑘 if

𝑓𝑘 (x) >
∑︁
𝑖

𝑥𝑖 𝑓𝑖 (x).

Write 𝑥𝑘 = 1 − 𝛿 for 𝛿 > 0. Then the above
inequality becomes

𝑓𝑘 (x) > (1 − 𝛿) 𝑓𝑘 (x) +
∑︁
𝑖≠𝑘

𝑥𝑖 𝑓𝑖 (x),

or
𝛿 𝑓𝑘 (x) >

∑︁
𝑖≠𝑘

𝑥𝑖 𝑓𝑖 (x).

Expanding the fitnesses, we have

𝛿∑
𝑖 𝑎𝑘𝑖 (1 − 𝛿)𝑥𝑖

>
∑︁
𝑖≠𝑘

𝑥𝑖∑
𝑗 𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗

,

i.e.
𝛿∑

𝑖 𝑎𝑘𝑖𝑥𝑖
> (1 − 𝛿)

∑︁
𝑖≠𝑘

1∑
𝑗 𝑎𝑖 𝑗𝑥 𝑗

. (7)

Since 𝑎𝑘𝑘 = 0, this is equivalent to

𝛿∑
𝑖≠𝑘 𝑎𝑘𝑖𝑥𝑖

> (1 − 𝛿)
∑︁
𝑖≠𝑘

1∑
𝑗 𝑎𝑖 𝑗𝑥 𝑗

. (8)

Since 𝑥𝑘 = 1 − 𝛿, it follows that 𝑥𝑖 ≤ 𝛿 for 𝑖 ≠ 𝑘 .
Thus, the left-hand side is bounded from below; in
fact, it is bounded from below by 𝑅𝑘 :

𝛿∑
𝑖≠𝑘 𝑎𝑘𝑖𝑥𝑖

≥ 𝛿∑
𝑖≠𝑘 𝑎𝑘𝑖𝛿

=
1∑

𝑖≠𝑘 𝑎𝑘𝑖
= 𝑅𝑘 .

Hence, to establish (8), it suffices to show that

𝑅𝑘 > (1 − 𝛿)
∑︁
𝑖≠𝑘

1∑
𝑗 𝑎𝑖 𝑗𝑥 𝑗

.

Working on the right-hand side, we find
∑︁
𝑖≠𝑘

1 − 𝛿∑
𝑗 𝑎𝑖 𝑗𝑥 𝑗

=
∑︁
𝑖≠𝑘

1 − 𝛿
𝑎𝑖𝑘 (1 − 𝛿) + ∑

𝑗≠𝑘 𝑎𝑖 𝑗𝑥 𝑗

=
∑︁
𝑖≠𝑘

1
𝑎𝑖𝑘 + 1

1−𝛿

∑
𝑗≠𝑘 𝑎𝑖 𝑗𝑥 𝑗

,

which is obviously bounded from above:
∑︁
𝑖≠𝑘

1
𝑎𝑖𝑘 + 1

1−𝛿

∑
𝑗≠𝑘 𝑎𝑖 𝑗𝑥 𝑗

<
∑︁
𝑖≠𝑘

1
𝑎𝑖𝑘

=
∑︁
𝑖≠𝑘

𝑟𝑘𝑖 .
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Hence, the condition

𝑅𝑘 >
∑︁
𝑖≠𝑘

𝑟𝑘𝑖

implies that 𝑥′
𝑘
> 𝑥𝑘 everywhere in the interior of

Δ, which implies that 𝐺𝑘 is g.a.d. □

Proof of Theorem 6. We in fact show the following
stronger result: if 𝑅𝑘 <

∑
𝑖≠𝑘 𝑅𝑖/(𝑛 − 1), the ver-

tex e𝑘 is not asymptotically stable. From this it
immediately follows that 𝐺𝑘 is not g.a.d.

To prove that e𝑘 is not asymptotically stable, we
show that, in (possibly infinitesimally small) local
environments of the vertex, 𝑥′

𝑘
< 𝑥𝑘 , so that x moves

away from e𝑘 . Let x ∈ Δ° such that 𝑥𝑘 = 1 − 𝛿 for
𝛿 > 0. The condition 𝑥′

𝑘
< 𝑥𝑘 is equivalent to

𝛿

1 − 𝛿 · 1∑
𝑖 𝑎𝑘𝑖𝑥𝑖

<
∑︁
𝑗≠𝑘

1∑
𝑖 𝑎 𝑗𝑖𝑥𝑖

. (9)

(cf. the derivation of (7) in the proof of Theorem
5). Let 𝑚 = min𝑖≠𝑘{𝑥𝑖}. Then 𝑥𝑖 ≥ 𝑚 for all 𝑖 ≠ 𝑘 ,
and so

1∑
𝑖 𝑎𝑘𝑖𝑥𝑖

≤ 1
𝑚

∑
𝑖 𝑎𝑘𝑖

.

Hence, to show (9), it suffices to show that

𝛿

1 − 𝛿 · 1
𝑚

· 1∑
𝑖 𝑎𝑘𝑖

<
∑︁
𝑗≠𝑘

1∑
𝑖 𝑎 𝑗𝑖𝑥𝑖

. (10)

Suppose 𝛿 is small (x is close to e𝑘). Then 𝑥𝑖 < 1−𝛿
for all 𝑖 ≠ 𝑘 . We have∑︁

𝑖

𝑎 𝑗𝑖𝑥𝑖 = 𝑎 𝑗𝑘 (1 − 𝛿) +
∑︁
𝑖≠𝑘

𝑎 𝑗𝑖𝑥𝑖 ,

and so (10) is equivalent to

𝛿

𝑚
· 1∑

𝑖 𝑎𝑘𝑖
<

∑︁
𝑗≠𝑘

1
𝑎 𝑗𝑘 + 1

1−𝛿

∑
𝑖≠𝑘 𝑎 𝑗𝑖𝑥𝑖

. (11)

Since 𝑥𝑖 < 1 − 𝛿 (for 𝑖 ≠ 𝑘), the right-hand side is
bounded from below by

∑︁
𝑗≠𝑘

1
𝑎 𝑗𝑘 + 1

1−𝛿

∑
𝑖≠𝑘 𝑎 𝑗𝑖 (1 − 𝛿)

=
∑︁
𝑗≠𝑘

1∑
𝑖 𝑎 𝑗𝑖

.

Hence, to show (11), it suffices to show that

𝛿

𝑚
· 1∑

𝑖 𝑎𝑘𝑖
<

∑︁
𝑗≠𝑘

1∑
𝑖 𝑎 𝑗𝑖

i.e. that
1∑
𝑖 𝑎𝑘𝑖

<
𝑚

𝛿

∑︁
𝑗≠𝑘

1∑
𝑖 𝑎 𝑗𝑖

,

i.e.
𝑅𝑘 <

𝑚

𝛿

∑︁
𝑗≠𝑘

𝑅 𝑗 .

Let us rewrite this last inequality:

1 − 𝛿 > 1 − 𝑚𝜌𝑘 ,

where 𝜌𝑘 =
∑

𝑗≠𝑘 𝑅 𝑗/𝑅𝑘 . Since 𝑥𝑘 = 1 − 𝛿, we
thus have

𝑥𝑘 > 1 − 𝑚𝜌𝑘 .

Now, since x ∈ Δ and since 𝑚 = min𝑖≠𝑘{𝑥𝑖}, we
have

1 = 𝑥𝑘 +
∑︁
𝑖≠𝑘

𝑥𝑖

≥ 𝑥𝑘 + (𝑛 − 1)𝑚
> 1 − 𝑚𝜌𝑘 + (𝑛 − 1)𝑚,

which is equivalent to

𝜌𝑘 > 𝑛 − 1.

In other words,
∑︁
𝑗≠𝑘

𝑅 𝑗

𝑅𝑘

> 𝑛 − 1,

or
𝑅𝑘 <

1
𝑛 − 1

∑︁
𝑗≠𝑘

𝑅 𝑗 . (12)

To recap: if condition (12) holds, then some
neighbourhood of e𝑘 exists in Δ° in which the
value of 𝑥𝑘 increases. This implies that e𝑘 is not
asymptotically stable; a fortiori,𝐺𝑘 is not g.a.d. □
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