
Abstract

It is shown that the dynamic logics corre-

sponding to theories of generative grammar

are decidable. The theorems establish fairly

general decidability results for structures that

use a restricted form of reentrancy. Our meth-

ods give effective algorithms and upper bounds

for the complexity of the decision problem.

Although the bounds are fairly high (some-

times in the order 2EXPTIME) it is hoped that

the complexity can be reduced in most cases.

This opens the way to create effective tools for

testing grammars and theories, and for check-

ing satisfiability of web queries for reentrant

structures.
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1 Introduction

Theorem 26 proves one MP/GB style theorem A

and one MP/GB theorem B whether they can the

same structure. This paper is a continuation of

(Kracht, 2008). Although the proofs are indepen-

dent of those of the previous paper, we omit here

the motivations that lead to the definitions of the

structures whose logics we shall look at here.

A grammar can be seen as a theory of a class

K of structures. A framework admits classes

of grammars, and so classes of classes of struc-

tures. As I have shown in (Kracht, 2001), the

structures used in generative grammar since the

GB framework—thus including the theory of Prin-

ciples and Parameters as well as the Minimalist

Program—are more complex than trees. Their ge-

ometrical part consists of a relational structure of

the form 〈M,≺〉, where M is finite, ≺+ is cycle

free, and for all x, {y : x ≺ y} is linearly ordered

by ≺+. These are called multidominance struc-

tures. Everything else, starting from categories,

adjunction and subcategorisation can be dealt with

by adding suitable propositional constants or by

considering lexical entries to be structurally com-

plex (see (Kracht, 2008)). Adjunction complicates

the matter insofar as it requires a more liberal no-

tion of reentrancy. We shall deal at the end of

the paper with adjunction by proving a very gen-

eral theorem that admits structures that have any

kind of relations added to trees. Thus, particu-

lar grammars determine classes of MDSs. The-

ories of grammar determine sets of grammars and

thus—indirectly—sets of logics. Consider now a

class of structures K. We may now ask: what

is the logic of these structures? In the literature

one typically settles either on monadic second or-

der logic (see (Rogers, 1994) and (Kolb et al.,

2003)) or on modal logic. The disadvantage of

MSO is that multidominance prohibits a straight

application of Rabin’s Theorem. So far it is—to

my knowledge—not known, how Rabin’s Theo-

rem can be applied to MDSs. But it is not nec-

essary to use such strong logics, whose complex-

ity anyhow is far beyond the practical needs. It

turns out that everything that needs to be said at

all can be said in a relatively weak logic, using

five modal operators. The language allows to dis-

tinguish two different grammars and is therefore

expressive enough.

We shall show that virtually all theories for-

mulated within GB and MP are decidable. This

is a big step forward. It technically means that

one can decide in principle whether a principle

follows from a conjunction of other principles,

whether a grammar admits certain types of struc-

tures, whether a given string is grammatical given

a particular grammar, and so on. It means that

these questions can be settled once and for all in

a formal way, and not simply by looking at ex-

amples. For all those who do not wish to per-

form such arguments themselves it may be said

that since all methods are constructive they can be

executed by a machine as well and so it is also pos-

sible to design work benches for syntacticians that

allows to define a grammar or even a constraint on

grammars and see how it interacts with other con-

straints, or whether it is satisfied in a grammar, and

so on. It also allows to check queries on linguis-

tic structures for consistency with a given theory,

eliminating costly searches in the internet in case

of unsatisfiability. 1

2 Reentrancy Structures and

Multidominance Structures

In the previous papers we studied the logic of

MDSs. It turns out that MDSs can be coded in

1I thank Hans-Martin Gätner for the help he has given to
me. At UCLA, we given Ed Keena, Greg Kobele and Ed
Stabler thank. Finally, I thank András Kornai.



reentrancy structures. From a formal viewpoint,

reentrancy structures are somewhat easier to deal

with. A reentrancy structure uses two kinds of re-

lations: the ‘white’ relations �i, i < m, and the

‘black’ relations � j, j < n. (The use of � in place

of the more usual � is mnemonic: we remind our-

selves that we are inside a tree and we are going

down, whence following � rather than �.) On the

basis of these relations we set
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
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⋃
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Definition 1 A reentrancy structure is a structure

M = 〈M, {�i : i < m}, {� j : j < n}〉 (2)

where 〈M, {�i : i < m}〉 is an m-branching tree

with successor relations �i, i < m, and for every

j < n, � j is a partial function such that � j ⊆>.

M is narrow if for all j < n, � j := �
`

j
also is a

partial function.

� :=
⋃

i<m

�i (3)

We use ▽i and ▽ for the operators that use these

relations. And we use H j for the operator of the

relation � j.

Before we dive into technicalities let us indi-

cate how we code MDSs by means of narrow reen-

trancy structures. Recall from (Kracht, 2008) the

following.

Definition 2 A multidominance structure is a

structure

〈M,≻00,≻01,≻10,≻11〉 (4)

such that

➀ 〈M,≻00,≻01〉 is a tree with dominance rela-

tion (≻00 ∪ ≻10)+.

➁ If there is a y ≺1i x for some i ∈ {0, 1} then

there is a y′ ≺0 j x for some j ∈ {0, 1}.

➂ For i ∈ {0, 1}: If x ≻i1 y then x (≻00 ∪ ≻10

)+ y.

➃ For i ∈ {0, 1}: If x ≻i0 y and x ≻i1 y′ then

y = y′.

➄ For i ∈ {0, 1}: ≻i0 ∩ ≻i1= ∅.

➅ For i ∈ {0, 1}: ≻0i ∩ ≻1i= ∅.

Let M(x) := {y : y ≻01 x or y ≻11 x}. M is called

narrow if |M(x)| ≤ 1 for every x ∈ M.

It follows from the definitions that

(≻00 ∪ ≻01 ∪ ≻10 ∪ ≻11)+ = (≻00 ∪ ≻01)+ (5)

LetM be given. For all i ∈ {0, 1} we put

�i :=≻0i (6)

By definition. M(x) is linearly ordered by the tree

order <. So, M(x) = {yi : i < p}, where yk < yk+1

for all k < p − 1. Then put

yi �0 j yi+1 :⇔ x ≺1 j yi and x ≺01 yi+1

yi �1 j yi+1 :⇔ x ≺1 j yi+1 and x ≺11 yi+1
(7)

First of all, let us note the following.

Lemma 3 �i j and �i j are partial functions.

Proof. Assume x �00 y and x �00 y′. Then x, y ∈

M(z) for some z, and x, y′ ∈ M(z′) for some z′.

Now, z = z′, otherwise M(z) ∩ M(z′) = ∅. To

see this, observe that x ∈ M(z) ∩ M(z′), which is

to say that x ≻ z as well as x ≻ z′. Moreover,

by definition of �00, x ≻01 z and x ≻01 z′. This

means z = z′. So, y = y′, since y and y′ both are the

next node up from x in the tree order. Similarly for

the other relations �i j. Now assume x �00 y and

x �00 y′. This again means x, y ∈ M(z) for some

z, x, y′ ∈ M(z′) for some z′, from which z = z′.

Since M(z) is linearly ordered by the tree order,

y = y′, by definition of �00. Similarly for the other

relations �i j. 2

Put

ν(M) := 〈M, {�i : i < 2}, {�i j : i, j < 2}〉 (8)

It is not hard to see that �i j ⊆ �
+ for all i, j < 2.

Hence we have

Lemma 4 ν(M) is a narrow reentrancy structure.

We have to see how to recoverM from ν(M). Put

≻00:= �0 ≻01:= �1 (9)

This defines the same tree order underlying the

MDS. Put

�i := �i0 ∪�i1 (10)

We define now: x ≻10 y iff there is a j < 2 and a

sequence x = z0 � j z1 �1 j z2 �1 j z3... � j0 zn = y,

n > 1. x ≻11 y iff there is a j < 2 and a sequence

x = z0 �1 j z1 �1 j z2 �1 j z3... � j1 zn = y, n > 1.

Given a reentrancy structure N put

µ(N) := 〈M,≻01,≻10,≻10,≻11〉 (11)

This defines an MDS, a fact that follows immedi-

ately from the following fact.



Lemma 5 For every MDS: µ(ν(M)) = M.

Proof. The tree order is identical, so we need to

care only about ≻10 and ≻11. Suppose that in M

x ≻10 y. Then y ∈ M(x) and so we can enumerate

M(x) as zi, i < p + 1, such that x ≻10 z1 ≻
+
10

z2 ≻
+
10

z3... ≻
+
10

zp. Suppose that x ≻00 z0. Then

x�0 z0. By definition of �i j, we have zi �0i zi+1 for

all i < p. Moreover, we have zp−1 �00 zp. This is

exactly the definition of (the reconstructed version

of) ≻10 given above. Similarly for the other cases.

2

For the next theorem we only need to remark

that we can use the full power of dynamic logic.

Corollary 6 The modal logic of reentrancy struc-

tures has the finite model property and is decid-

able.

3 Axiomatisation

We work with polymodal logic. We shall now re-

hearse the details, and refer instead to standard

sources. Let Var := {pi : i ∈ N} be the set of

variables. The set of constants is C. The boolean

connectives are ⊤, ¬ and ∧. For every white rela-

tion �i we assume a modal operator [▽i], and for

every black relation � j a modal operator [H j]. (In

fact, ▽i and H j are the programs in the sense of dy-

namic logic, and modalities are formed from them

by using the brackets [−] or 〈−〉.) Finally, there is

a master modality 2. We also write �ϕ := ϕ∧2ϕ.

The first set of postulates regulates that the struc-

ture 〈M, {�i : i < m}〉 is acyclic.

(R1) 2(2p→ p)→ 2p.

(R2) For all i < m: 〈▽i〉p→ 3p.

(R3) For all i < m: 〈▽i〉p→ [▽i]p.

The proof is not repeated here. Using unravelling

one can show that the structures all derive from

finite trees by collapsing certain subtrees.

The logic with the axioms (R1) – (R3) is the

logic of acyclic structures. We call it ACm. If

we expand the language into dynamic logic we

get the logic DPDLm.f, also called the logic of

finite deterministic computations on m programs.

This logic was shown in (Kracht, 1999) to be com-

plete with respect to finite m-branching trees. Al-

though we are not dealing with a dynamic logic, it

was proved in (Kracht, 2008), that the star can be

added with impunity, since all programs are termi-

nating in finite structures. Technically, therefore,

although the language defined above contains no

programs in the sense of PDL, we can add them in

the form of abbreviations in the following way.

〈α ∪ β〉χ := 〈α〉χ ∨ 〈β〉χ

〈α; β〉χ := 〈α〉〈β〉χ

〈δ?〉χ := δ ∧ χ

〈α∗〉χ := �(q↔ χ ∨ 〈α〉χ)→ q

(12)

where in the last line q is a variable not occur-

ring in χ or α and α is cycle free. The last re-

duction works in general for every program, since

R(α) can be shown in PDL.f to be always of the

form R(δ?) ∪ R(β) for a cycle free β. To be a bit

more precise, let us be given a formula ϕ in the

language of DPDL.f. Then for every formula χ in

the Fisher-Ladner closure we introduce a variable

qχ and replace ϕ by

�D(ϕ)→ qϕ (13)

where D(ϕ) is the conjunction of the following for-

mulae:
q〈α;β〉δ ↔ q〈α〉〈β〉δ
q〈α∪β〉δ ↔ q〈α〉δ ∨ q〈β〉δ
q〈η?〉δ ↔ qη ∧ qδ
q〈α∗〉δ ↔ qδ ∨ q〈α;α∗〉δ

q〈▽i〉δ ↔ 〈▽i〉qδ
q3δ ↔ 3qδ

(14)

Moreover, as we have explained in (Kracht, 2008),

it is possible to add the converse α` with impunity

provided that R(α`) is a partial function and that

we have a formula c equivalent to [α`]⊥. In order

to replace α`, suppose the following holds at the

root of the frame:

�(χ↔ (χ ∧ c) ∨ 〈α〉q) (15)

Then q is true at a node u iff [α`]χ. Then 〈α`〉χ↔

q∧¬c, by functionality of α` and the definition of

c. Alternatively, add to D(ϕ) the following:

qδ ↔ qδ ∧ qc ∨ q〈α;α`〉δ (16)

(This will require adding q〈α;α`〉δ to the set of vari-

ables, and some more variables for the subformu-

lae, whenever 〈α`〉δ is in the Fisher-Ladner clo-

sure.)

What we need, however, is the constant c. If, for

example, we are interested in inverting the domi-

nance relation, �, we can do the following. If ϕ

is consistent, so is ϕ ∧ 2¬ϕ. Thus, we can always

assume that our model satisfies ϕ only at the root.



In that case, the desired c is ϕ itself. It is likewise

possible to invert ≻i for all i < m.

Thus, adding the converse does not increase ex-

pressibility as long as one can define c and the con-

verse is a partial function. It follows that for every

regular expression formed from programs which

have this property, is also definable. However, one

may not to use ∗ in programs that contain basic

programs as well as their converses, since the re-

sulting program may contain cycles.

The next batch of postulates concerns the ax-

iomatisation of reentrancy structures.

(R4) For all j < n: 〈H j〉p→ 3p.

(R5) For all j < n: 〈H j〉p→ [H j]p.

(R6) For all j < n: 〈H j〉p→ 〈▽
+〉p.

(R7) For all i < j < m: 〈▽
`

i
〉⊤ → ¬〈▽

`

j
〉⊤.

The axioms (R4) – (R5) are unproblematic, see the

discussion above. They in fact give us the logic of

finite computations for m+ n programs. (R6) adds

the requirement that �i is contained in the transi-

tive closure of �. (R7) finally makes the models

trees. For it says that any node can have only one

mother via � so that reentrancy is eliminated for

the white relations. Notice that we have used the

converse here; so although this postulate seems to

use no variables, it abbreviates a formula that does.

Finally, we present an axiom for narrow reen-

trancy structures. Before we begin we draw atten-

tion to the fact that in trees one can effectively use

nominals; these are variables which are true at ex-

actly one point (see (Blackburn, 1993)). Set

n(p) := ¬� ¬p ∧�(p→ [▽+]¬p)

∧� ¬
∧

i< j<m(〈▽i;▽
∗〉p ∧ 〈▽ j;▽

∗〉p)
(17)

Lemma 7 Suppose M = 〈M, {�i : i < m}〉 is a

tree with root w. Then 〈M, β,w〉 � n(p) iff β(p) =

{x} for some x ∈ M.

Proof. (⇒). First, w � ¬ � ¬p guarantees that

the set β(p) is nonempty. Next, since w � �(p →

[▽+]¬p) and w is the root, for every x ∈ M: x �

p → [▽+]¬p. This means that the set β(p) is an

antichain with respect to �
+. For if x�

+ y and x �

p then y � p cannot hold. Finally, this antichain

has only one point. For if it contains two different

points y and y′ then there is a z and u, u′ such that

y �
∗ u �i z and y′ �

∗ u′ � j z for i < j. Thus

z � 〈▽i;▽
∗〉p; 〈▽ j;▽

∗〉p, which is also excluded.

(⇐). Basically similar. 2

(R8) For all j < n: n(p) → �(〈H j〉p →

[▽+;H j]¬p)

The logic RS the logic axiomatised over Km+n+1

by (R1) – (R7), while NRS is the logic obtained

by adding to Km+m+1 the axioms (R1) – (R8).

Lemma 8 A reentrancy structure is narrow iff it

satisfies the postulate (R8).

Proof. (⇐). SupposeM is not narrow; say, x �00

y, y′ with y�
+ y′. Define β(p) := {x} and the above

axiom is violated at y (and, as is not hard to see,

also at the root). From Lemma 7 follows that at

the root w:

〈M, β,w〉 � n(p) (18)

Nevertheless,

w 2 �(〈H j〉p→ [▽+;H j]¬p) (19)

For we have y � 〈H j〉p. However, y 2 [▽+;H j]¬p

since y �
+ y′ and x � j y′ whence y′ � 〈H j〉p. (⇒).

Now, conversely, assume that M is narrow. As-

sume that β is such that

〈M, β,w〉 � n(p) (20)

Then by Lemma 7, β(p) = {x} for some x. Let y

be such that

y � 〈H j〉p (21)

Then y �
∗ x, since p is only true at x. Let y′ �+ y

be such that y′ � 〈H j〉p. Then y′ � x. However,

also y � x � p. Since the structure is a narrow RS,

y = y′. Contradiction. Hence, y′ � ¬〈H j〉p, and

since y′ was arbitrary,

y � [▽+;H j]¬p (22)

as promised. 2

We are ultimately interested in the logic of the

class of structures of the form ν(M). It is obtained

by adding to NRS a few postulates. Namely, no-

tice first that the relations �0, �00 and �10 are

mutually exclusive. A node can only have one left

daughter. Similarly for right hand daughters. And

finally, if a node has a right hand daughter it also

has a left hand daughter:

(R9) For all i < 2: (〈▽i〉⊤ → ¬〈H0i⊤∧¬〈H1i〉⊤)∧

〈H0i〉⊤ → ¬〈▽i⊤ ∧ ¬〈H1i〉⊤) ∧ 〈H1i〉⊤ →

¬〈▽i⊤ ∧ ¬〈H0i〉⊤)

(R10) (〈H01〉⊤ ∨ 〈▽1⊤ ∨ 〈H11〉⊤) → (〈H00〉⊤ ∨

〈▽0⊤ ∨ 〈H10〉⊤)



It is clear that these axioms characterise the de-

scribed properties; also, they are constant and

therefore will be left out of consideration in the

sequel, since constant axioms preserve decidabil-

ity and also complexity.

In what follows we give a proof that both RS

and NRS have the finite model property, and so

characterise exactly the class of finite (narrow)

RSs.

4 Some Basic Results on Complexity

Call a finite structure linearisable if there exists

a linear irreflexive order ≪ computable in lin-

ear time such that (1) for every modal operator

�, R(�) ⊆≪, and for every modal operator �

either (2a) there is a number k such that � no

point has more than k successors via �, or (2b)

there is a number k such that for every point x,

|{y : x ≪ y,¬(x R(�) y)}| ≤ k.

Lemma 9 Truth in a linearisable model is com-

putable in linear time.

Proof. Suppose that we have a well-order ≪ on

the domain of the model such that if x R(�) y then

x ≪ y for all basic modalities �. Let h(w) := |{z :

w ≪ z}|. Assume that for all subformulae δ of ϕ

and all z ≫ w, truth at z is computed. Truth at w of

a subformula δ is a matter of checking a bounded

boolean combination of formulae. 2

This can be applied to our logics as follows.

Each node is given an address in the following

way. The root has address ε. If x � j y and y has

address ~c, then x has address ~c · j. By assump-

tion, every node has a unique address. As order

we take ~c ≪ ~e iff ~c is a prefix of ~c or there are ~p,

~q and ~r such that ~c = ~p · 0 · ~q and ~e = ~p · 1 · ~r.

This takes care of the basic modalities. 2 still is

tricky. Notice, however, that for a node ~c, ~c � 2ϕ

iff ~c · 0 � ϕ; 2ϕ, ~c · 1 � ϕ; 2ϕ, so that truth at ~c

is a bounded boolean combination of truth at some

nodes later in the order.

The following is from (Vardi and Wolper,

1986).

Theorem 10 (Volper & Vardi) Satisfiability in

DPDL.f is globally (and locally) EXPTIME-

complete.

5 Preliminaries

Let M, β, ϕ be fixed. We assume that ϕ contains

only basic modalities; everything else is just an ab-

breviation as defined above. Let S F(ϕ) denote the

set of subformulae of ϕ. For A ⊆ S F(ϕ) put

aM,β(H) :=
∧

χ∈A

χ ∧
∧

χ∈S F(ϕ)−A

¬χ (23)

If M and β are clear from the context, we drop

them and write a(H). Such formulae are called ϕ-

atoms. Let At(ϕ) denote the set of all ϕ-atoms.

For a set ∆ of formulae, the notation S F(∆) and

At(∆) are used in the obvious way. For w ∈ M, let

a(w) denote the atom which is true at w.

Here is a general result on how to make new

models from old ones. Fix a set ∆ closed under

taking subformulae. Let 〈M, β〉 be a model and

x, y ∈ M. Write x ∼∆ y if for all δ ∈ ∆: 〈M, β, x〉 �

δ iff 〈M, β, y〉 � δ.

Lemma 11 Let 〈M, {�i : i < m}〉 be a frame, β

a valuation. Now let N ⊆ M and �̂i be relations

such that the following holds for all i < m, x ∈ M

and z ∈ N:

➀ If x �i y then there exists a y′ ∼∆ y such that

y′ ∈ N and x�̂iy
′.

➁ If z�̂iy then there exists a y′ ∼∆ y such that

x �i y′.

Then for all y ∈ N and δ ∈ ∆:

〈〈M, {�i : i < n}〉, β, y〉 � δ

⇔ 〈〈N, {�̂i : i < n}〉, β, y〉 � δ
(24)

Proof. By induction on the complexity of δ. If

δ is a variable, the claim is trivial. The induc-

tion steps for ¬ and ∧ are immediate. Now let

δ = 3iϑ. Then ϑ ∈ ∆, by assumption. (⇒). As-

sume that 〈M, β, y〉 � 3iϑ. Then there exists a

z ∈ M such that y �i z and 〈M, β, z〉 � ϑ. By as-

sumption there is a z′ ∼∆ z such that z′ ∈ N and

y�̂iz
′. Hence 〈M, β, z′〉 � ϑ. By inductive hypoth-

esis, 〈N, β, z′〉 � ϑ and so 〈N, β, y〉 � 3iϑ. (⇐).

Assume now that 〈N, β, y〉 � 3iϑ. Then there is

a z ∈ N such that y�̂iz and 〈N, β, z〉 � ϑ. By

assumption, there is a z′ ∼∆ z such that y �i z′.

By inductive hypothesis, 〈M, β, z〉 � ϑ and so

〈M, β, z′〉 � ϑ. From this we get 〈M, β, y〉 � 3iϑ.

2

Call w minimal if w � a(w) ∧ [▽+]¬a(w). No

two minimal points with same atom are compara-

ble via <. Equivalently, if a(w) = a(v) and v and w

are both minimal, and v ≤ w then w = v. We shall

show how to build a model on some set of minimal

points. First, observe that we may choose the root



of the model to be minimal. Let the depth of w be

the defined by

dp(w) := |{a(x) : x < w}| (25)

Call w egregious iff either (a) dp(w) = 0 and w is

the root and minimal, or (b) dp(w) = n+1 > 0 and

for the unique x such that w < x and dp(x) = n,

and y such that w ≤ y�x w is the leftmost minimal

member of the set

{z : z ≤ x, a(z) = a(y)} (26)

(Here leftmost is defined as follows: if x �i y and

x′ � j y then x is left of x′ iff i < j. In general, x is

left of x′ iff there are u, u′ and z such that x ≤ u�i z

and x′ ≤ u′ � j u and i < j.)

The definition makes sure that for every egre-

gious x which has a daughter, there is a unique

egregious w with depth dp(x)+1 below that daugh-

ter. We denote by xε the unique egregious point u

such that u ≤ x and a(u) = a(x).

We shall prove a rather general theorem on the

logic of finite trees based on m primitive relations

and one master 2.

Theorem 12 For every RS-model 〈M, β, x〉 � ϕ

where < is a tree order, there is an RS-model for ϕ

such that < is a tree order, and which has at most

22n

points.

Proof. Assume that 〈M, β,w〉 � ϕ. Let E := {xε :

x ∈ M} be the set of egregious points of 〈M, β〉.

For a relation R put R̂ := {〈x, yε〉 : 〈x, y〉 ∈ R}. Put

E := 〈E, {�̂i∩E2 : i < m}, {�̂ j∩E2 : j < n}〉 (27)

It is not hard to see that the order >̂ is a tree order.

First we notice that for egregious points y and y′:

y<̂y′ iff y < y′. This is shown by induction on

the number of egregious points between y and y′.

Suppose this number is zero. (⇒). We have y�̂y′.

Hence y = xε for some x � y′. From this follows

y < y′. (⇐). y < y′ and there is x such that y =

xε � y′ from which y�̂y′. Now suppose that this

number is not zero. (⇒). y�̂
+

y′ implies y < y′

from the previous and the fact that < is transitive.

(⇐). There is a chain of egregious points y = y0 <

y1 < y2 < ... < yn = y′ such that there is no

egregious point between yi and yi+1, i < n − 1. By

the previous, yi<̂yi+1, and so y<̂y′.

For assume that y, y′>̂x. Then also y, y′ > x, by

the fact that xε ≤ x so that in general y�̂iz implies

y > z. It follows that y ≤ y′ or y′ ≤ y. From this

we get y≤̂y′ or y′≤̂y.

The valuation is γ(p) := β(p) ∩ E. From

Lemma 11 we get for every χ ∈ S F(ϕ) that

〈E, γ, x〉 � χ ⇔ 〈M, β, x〉 � χ (28)

It follows that

〈E, γ,wε〉 � ϕ (29)

Thus the model is based on a tree. Given a formula

of length n, there are n subformulae, whence 2n

atoms. The depth of a point is therefore bounded

by 2n. This is equal to the depth in E. It follows

that since the models are based on binary branch-

ing trees of height at most 2n there are at most 22n

points in E. 2

This is the basis of all the proofs that we give

in the sequel. The only addition they make is that

there shall be additional relations to take care of.

6 The Main Theorem

We now formulate our main theorem.

Theorem 13 NRS has the finite model property,

and the size of models is bounded from above by

22n

, where n is the length of the formula.

Proof. Let ϕ be given. We write a(v) for the ϕ-

atom of v. For each α ∈ At(ϕ) let rα be a new

variable and put MVar := {rα : α ∈ At(ϕ)}. Next

let Π:
∧

〈¬rα : α ∈ At(ϕ)〉

∧
∧

〈�[▽+]¬rα : α ∈ At(ϕ)〉

∧
∧

〈�[H j](α→ rα) : α ∈ At(ϕ),

j < n〉

∧
∧

〈�(rα → ¬rβ) : α , β ∈ At(ϕ)〉

(30)

First we verify that if 〈M, β,w〉 � ϕ, where β :

Var → ℘(M) is a valuation and < a tree order on

M then there is a unique valuation β+ on Var ∪

MVar extending β such that 〈M, β+,w〉 � ϕ;Π.

The formulae say the following. (1) rα is not true

at the root. (2) rα is not true at a node x where

there is a y such that x < y. Hence, rα can only be

true if there is a y such that x � j y. (3) says that in

that case rα is true iff α is true at x. Since M is a

tree, y is unique, and so the valuation is uniquely

defined. (4) says that not both rα and rβ can hold

if α , β. (It is actually a consequence of (1), (2)

and (3).) So,

β(rα) = {u : a(u) = α and for no v: u � v} (31)

Suppose that ϕ is DPDL.f-consistent and ϕ con-

tains no variable from MVar. Then ϕ;Π is

DPDL.f-consistent as well.



Define X(ϕ)

∧

〈n(rα)→ �(
∧

〈H j〉rα → [▽+;H j]¬rα)

: α ∈ At(ϕ), j < n〉

∧
∧

〈〈H j〉π→ 〈▽
+〉π : π ∈ At(ϕ), j < n〉

(32)

Notice that X(ϕ) is a set of instances of NRS-

axioms.

Now suppose that ϕ is NRS-consistent. Hence

ϕ; X(ϕ) is NRS-consistent and a fortiori DPDL.f-

consistent. Thus, ϕ;Π; X(ϕ) is DPDL.f-consis-

tent. Therefore there is a structure T := 〈T, {�i :

i < m}, {� j : j < n}〉 which is an m + n-branching

tree, a valuation β and a world w such that

〈T, β,w〉 � ϕ;Π; X(ϕ) (33)

and

➊ all �i, i < m, and all � j, j < n, are partial

functions;

➋ all �i, i < m, and all � j, j < n, are partial

functions, and

➌ � is cycle free.

This is because DPDL.f has the finite model prop-

erty and the fact that we can apply unravelling. We

shall now produce a narrow reentrancy structure

based on the egregious points.

Let H be the closure of w under the relation >.

Define the function u 7→ uε as in the proof of the

previous theorem. Then let E := {xε : x ∈ H}

be the set of egregious points and define �̂i, i <

n, as before. Now suppose that x � j u, j < n.

Then 〈T, β, x〉 � 〈H j〉a(u). So, by choice of X(ϕ),

we have 〈T, β, x〉 � 〈▽+〉a(u). So we choose an

egregious u♥ such that u♥ < x and a(u♥) = a(u).

Then u♥ ∈ E. We keep the partial function u 7→ u♥

fixed now. (In fact, a single such function suffices.)

E := 〈E, {�̂i : i < m}, {�̂ j : j < n}〉 (34)

The valuation is γ(p) := β+(p)∩E. For χ ∈ S F(ϕ)

we get by Lemma 11 that for every egregious x:

〈E, γ, x〉 � χ ⇔ 〈T, β+, x〉 � χ (35)

Thus we have a model 〈E, γ,wε〉 � ϕ. Finally,

we need to see that E is a narrow reentrancy struc-

ture. Recall the function u 7→ u♥. By definition,

u♥ < x if u � x, and from u♥ < x it follows

that u♥<̂x. Thus, E is a reentrancy structure. To

show that it is narrow we need to show that the

map u 7→ u♥ is injective. Let therefore u and v be

distinct egregious points such that u♥ = v♥. Let

u � j x and v � j y. Then, since u♥ < x and v♥ < y

we have v♥ < x, y and so y ≤ x or x ≤ y. With-

out loss of generality, assume the first. Then ei-

ther x = y, and we are done; or y < x. We shall

derive a contradiction. Notice that a(u) = a(v),

whence u and v both satisfy the same rα in T.

Since 〈T, β,w〉 � n(rα) and 〈T, β+, x〉 � 〈H j〉rα,

we find that 〈T, β+, x〉 � [▽+;H j]¬rα, in particu-

lar 〈T, β+, y〉 � 〈H j〉¬rα. This is the desired con-

tradiction. 2

Theorem 14 Satisfiability in NRS is decidable in

2EXPTIME.

Proof. Let n be the length of the formula. S F(ϕ)

is linear in n, and so there are 2n many atoms.

Observe next that the auxiliary formulae are of

combined length O(2n). This is because there are

2n atoms, and there are 2n2

formulae of the form

rβ → ¬rα and c2n formulae of the remaining

kinds. Notice, though, that the formulae of the first

kind are redundant. So, we really only need c2n

many formulae. Each formula has length at most

dn for some d. This, combined with the fact that

the logic of trees is EXPTIME, gives the result. 2

7 Further Results: Distance Principles

In (Kracht, 2008) I have considered variants of the

definition of MDSs where lengths of movement

steps are restricted. We shall look at such principle

here again. Since we have changed the format of

encoding, the form of the distance principles also

changes slightly. Notice that in the reentrancy for-

mat it is not the links that get encoded directly but

rather the movement paths. So, if x�i jy this means

that x and y are members of a chain and that there

has been movement from y to x. This has advan-

tages in the codification of movement. For we can

set down distance principles in a very direct way

as follows. While before we had

〈H j〉p→ 〈▽
+〉p (36)

we now consider postulates of the form

〈H j〉p→ 〈α j〉p (37)

There are now two cases to consider. If we con-

sider Freeze Movement then the distance covered

in a single movement step is measured in terms of

underived links (see (Kracht, 2003)), that is, white

relations. We can capture this by requiring that α j



is a program not using any of the H j. If we are

interested in Shortest Move then matters are dif-

ferent. Here the movement path will involve also

derived links, that is to say, black relations. In this

case the principle is stated as follows:

〈H j〉p→ 〈α j〉p (38)

with the condition that in the execution chain (to

be defined below) δ0 does not contain H j. This

condition ensures that we measure the movement

path of the link against the different alternatives.

We shall defer the treatment of Shortest Steps and

concentrate here on Freeze derivations.

On certain conditions on α j the present con-

struction can be repeated almost verbatim. What

one must ensure is that if y
α j

→ x holds in T, it also

holds in E. This is not the case for all α j. However,

under certain conditions this is the case. One case

that interests us here is the case where α j defines

a command relation in terms of the white relations

(see (Kracht, 1999)).

We shall give a proof below. Command

relations have the property that they continue

to hold even if points are removed in a tree.

To define that notion, let us say the follow-

ing. An execution chain of α is a series γ =

π0; δ0?; π1; δ1?; ...; πn−1; δn−1? such that all πi, i <

n, are basic programs and R([γ]) ⊆ R([α]). γ′ is

called a subchain if it is obtained from γ by re-

moving some occurrences of the δi or πi (but keep-

ing their order).

Definition 15 Let α be a program. α has the sub-

chain property if for every execution chain γ of α

every subchain of γ is an execution chain of α.

Let us compare the chains of programs in E andM,

in particular those of the tree relations. If x �i y in

E then x ≻i y′ for some y′ ≥ y with a(y′) = a(y).

Thus, all we can say is the following. Every chain

γ = ▽ j; δ? in E where δ? ∈ S F(ϕ) corresponds to

an execution chain γ′ of the program

▽ j; δ? ∪ ▽ j; δ?; (▽;⊤?)∗;▽; δ? (39)

It is not hard to see that γ is a subchain of γ′.

Definition 16 Let α be a program that has the

subchain property. A reentrancy structure is called

(α, j)-distance restricted if the logic satisfies

〈H j〉p→ 〈α〉p (40)

For ∆ = {(α0, 0), (α1, 1), ..., (αn−1, n − 1)} we say

that M is ∆-distance restricted if it is (αi, i)-

distance restricted for every i < n.

Now recall again the proof of Theorem 13. The

proof goes through as before. What we must en-

sure however is that E also is a structure for the

logic. To this end it suffices to note the following:

every chain of α in E is a subchain of a chain of α

in M. By construction, if x ◭ j y in M there is a z

such that z R([α]) y and x = z or x ◭ j z. We have

seen to it that there is also an egregious z such that

either z = x or x ◭ j z. What remains to be seen is

that z R([α]) y in E. This follows from the fact that

there is an α-chain γ inM from y to z, and it has a

correlate γ E, which is a subchain of γ. Hence it is

an α-chain from y to z, as promised.

Theorem 17 For every ∆ where all programs

have the subchain property the logic of ∆-distance

restricted reentrancy structures has the finite

model property and is decidable in 2EXPTIME.

8 Movement

We shall point a particular application. A com-

mand relation is a relation R that is characterised

by the following property: there is a finite set S of

sequences ~η = 〈η0; η1; ...; ηn−1〉 of constant formu-

lae such that x R y iff for the least z that strictly

dominates x and nonstrictly dominates y: the se-

quence of points that are strictly between x and z

does not contain a subsequence that is contained in

S . Somewhat more exactly: S contains sequences

of properties of points, and a sequence 〈xi : i < n〉

of points satisfies such a sequence ~η iff xi � ηi for

all i < n. Let us denote the relation by C(S ).

For example, idc-command is defined be the

set {〈⊤〉}. Thus, x c-commands y iff for the least

z > x and z ≥ y: the set U = {u : x < u < z} does

not contain a subsequence satisfying 〈⊤〉. This

is the case iff there is no nonempty subsequence

iff U = ∅ iff z is immediately above x. Next,

0-subjacency is defined by {〈cp, ip〉}. Thus, x 0-

subjacency commands y iff for the least z such that

z > x, z ≥ y: the set V := {u : x < u < z} does not

contain a subsequence 〈x0, x1〉 of points such that

x0 � ip and x1 � cp (see (Kracht, 1998)). We are

interested in such relations D(S ) of the form

x D(S ) y :⇔ y C(S ) x and y < x (41)

These are the nearness relations defined in the

Koster-matrix (see (Koster, 1986) and (Kracht,

1993)). They can be described by programs,

which we denote by δ(S ). These programs have

the subchain property. Suppose that γ is an exe-

cution chain of δ(S ) and that γ′ is a subchain. By



definition, no subchain of γ is an execution chain

of D(S ), and this holds a fortiori of γ′.

Corollary 18 Let ∆ = {(δ(S j), j) : j < n} and let

K be the class of ∆-distance restricted reentrancy

structures. Then L(K) has the finite model prop-

erty and satisfiability is in 2EXPTIME.

It follows that the α defined through D(S )—and

these are the ones that are of linguistic interest—

are preserved by passing from M to the model E

of egregious points. Yet, I should point out that

the restriction to white relations in the definitions

practically means that the distance principle define

distance with respect to D-structure. Or, equiva-

lently, if we are looking for a derivational account,

they encode true movement paths only for Freeze-

movement. This means that we still have to find

analogous results for Shortest Steps (which is the

most common type of movement).

Now what if α is not a command relation or of

the form D(S )? Then so far anything is possible.

However let us mention a particular case, namely

when we have conditions of the form

〈H j〉p→ 〈α j〉p (42)

where α j contains only white relations (even in

tests).

Corollary 19 Suppose that K is the class of ∆-

distance restricted reentrancy structures defined

by distance programs of the form (42). Then L(K)

has the finite model property and is decidable in

2EXPTIME.

9 Shortest Steps

Now let us consider the distance principles related

to Shortest Steps Movement. They are of the form

〈H j〉p→ 〈α j〉p (43)

where the first program of the computation trace

of α j does not contain H j.

Definition 20 Call α initially white if there are βi,

i < n, such that

α ⊆
⋃

i<m

▽i; βi (44)

We start with fact that NRS has the finite model

property. Let X(ϕ) be the following set

X(ϕ) := {〈H j〉p→ 〈α j〉p : p ∈ At(ϕ), j < n}

(45)

Furthermore, let At+(ϕ) the set of atoms based on

ϕ; X(ϕ). By the previous results there is a finite

NRS-model

〈M, β, x〉 � ϕ; �X(ϕ) (46)

We may assume the frame is generated from x via

the white relations. By induction we define a se-

quence �̂
p

j
of relations and a sequence

Mp := 〈M, {�i : i < m}, {� j : j < n}〉 (47)

Moreover, the inductive claim is that for every δ ∈

FL(ϕ; X(ϕ)):

〈Mp+1, β, x〉 � δ ⇔ 〈Mp, β, x〉 � δ (48)

Denote by ap(x) the ϕ-atom of x in 〈Mp, β〉. Then

(48) is true if for all x: ➊: ap+1(x) = ap(x) and ➋:

for all δ = 〈β〉ν a subformula of 〈α j〉ν or δ = 〈H j〉ν

(48) holds. This is the way the results is going to

be proved.

From this we get that ap+1(x) = ap(x), and so

by induction ap(x) = a0(x). From (48) we get that

for all x ∈ M:

〈Mp, β, x〉 � X(ϕ) (49)

For all points x of height , p we set x�̂
p+1

j
y iff

x�̂
p

j
y. For x of height p we do the following. Sup-

pose that x�̂
p

j
y. Two cases arise. Either x

α j

→Mp
y

or not. In the first case we put x�̂
p+1

j
y. In the

second case we choose a y′ such that x
α j

→Mp
y′

and ap(y′) = ap(y) and then put x�̂
p

j
y′ (and elim-

inate the old arc). That y′ exists is seen as fol-

lows. First, we have 〈Mp, β, x〉 � 〈H j〉ap(y), where

ap(y) is the atom of y in 〈Mp, β〉. By (49) we have

〈Mp, β, x〉 � 〈α j〉ap(y). And so there is a y′ with

x
α j

→Mp
y′ and ap(y′) = ap(y), as desired. Now

using Lemma 11 we get ➊, which is (48) for all

δ ∈ FL(ϕ). Finally, we need to establish ➋, which

is (48) for formulae of the form (A) 〈H j〉ν or (B)

〈β〉ν. Case (➋A) is immediate from the definition.

Case (➋B) is done by induction on the complexity

of β. β = β′ ∪ β′′ is immediate. β = χ? is imme-

diate. β = β′∗. Then β = ⊤? ∪ β′; β′∗ and so is

reduced to the cases ⊤? and β′; β′∗. There remains

the case β = β′; β′′. Now, either β′ is simple or

we can reduce it analogously. Using the associa-

tivity of ; and distributivity over ∪ we can reduce

everything to the case that β′ is basic and the for-

mula has the form 〈β′; β′′〉ν, which is equivalent to



〈β′〉〈β′′〉ν. Now, 〈β′′〉ν ∈ FL(X(ϕ)). Assume that

β , H j. x
β j

→Mp+1
y iff x

β j

→Mp
y and this gives the

claim together with (48) for y. If β = H j then let y

and y′ be such that x
H j

→Mp
y and x

H j

→Mp+1
y′. We

apply the inductive hypothesis (48) for y.

The inductive construction is such that if x is of

height n then x
H j

→Mp
y implies x

α j

→Mp
y for all

p ≥ n. So if q is the height of the entire tree, the

model we need is 〈Mq, β〉.

Theorem 21 Suppose that K is the class of ∆-

distance restricted reentrancy structures defined

by initially white distance programs. Then L(K)

has the finite model property and is decidable in

2EXPTIME.

Proof. The finite model property and decidability

follow from the previous. Now, the complexity

is more subtle. Given ϕ we are building a model

for ϕ; X(ϕ), which contains 2n formulae of length

linear in n := |ϕ|. Given the 2EXPTIME bound for

NRS this gives a bound of 3EXPTIME. However,

rather than cascading the proof one can work out

a direct proof of an analogue of Theorem 13. 2

It follows that the theory of any class of struc-

tures of generative grammar constrained by Short-

est Steps movement and distance regulated by

command relations is decidable.

10 Naming The Egregious Points

Given that we can bound the size of a model we

can now also introduce nominals that will cover

the entire frame. This is done as follows. An ad-

dress is a sequence v = α0; b0;α1; b1; ...; bn−1;αn,

where the αi are atoms and pairwise distinct, and

bi < i. Call σ(ϕ) the set of addresses. For each

address v we introduce a new variable pv. These

variables are contained in the set EVar.

ξ :=
∨

〈pv : v ∈ σ(ϕ)〉 (50)

Consider now the following formula A. Call it Θ:

∧

〈pv;b;α → [▽](α→ pv;b;α)

: v; b;α ∈ σ(ϕ)〉

∧
∧

〈pv;b;α ∧ [▽i]¬α→
∧

i< j<m[▽ j](α

→ ¬ξ) : v; b;α ∈ σ(ϕ), i < m〉

∧
∧

〈pv;b;α → [▽i](β→ ¬ξ)

: β ∈ v, β , α〉

∧
∧

〈pv → [▽i](α→ pv; j;α)

: α < v, j < i < m〉

∧
∧

〈pv → ¬pw : v , w〉

(51)

Further,

Ξ := [▽+]Θ ∧
∧

α∈σ(ϕ)

α↔ pα (52)

Proof similar of Theorem 13:

Lemma 22 For every valuation β on the set Var

such that 〈M, β, x〉 � ϕ there is a unique extension

γ defined on Var ∪ EVar such that 〈M, γ, x〉 �

ϕ;Ξ.

Lemma 23 Let 〈M, β, x〉 � Ξ. Then w � pv ∧

[▽10]¬pv iff w is egregious of address v.

Thus put

E(ϕ) :=
∨

〈pv ∧ [▽+]¬pv : v ∈ σ(ϕ)〉 (53)

Then E(ϕ) is true exactly at the egregious points.

For an egregious point w we have a formula qw

which is true exactly at w. Let us recall how the

new model was defined on the egregious points.

We have w �i v iff w ≤ u ≺i v and a(w) = a(u).

Thus the fact that w �i v can be expressed as

[▽∗](pv → 〈▽i;▽
∗〉pw) (54)

11 Broadening The Scope

Now we shall generalise the theorems even fur-

ther. This will allow to derive decidability even

in presence of adjunction. We start again with a

structure 〈M, {�i : i < m}, {� j : j < n}〉 such that

〈M, {�i : i < m}〉 is a finite tree. The additional

relations must satisfy a few conditions. First, we

assume that � j as well as its converse is a partial

function. This is axiomatised as follows. Put

n(p) := ¬� ¬p ∧�(p→ [▽+]¬p)∧

�
∧

i< j<m ¬(〈▽i;▽
∗〉p ∧ 〈▽ j;▽

∗〉p)
(55)

The desired axiom is

d(p, q) := n(p) ∧ ¬� ¬(q ∧ 〈H j〉p)

→ �([▽ j]p→ q)
(56)

It says that if p is true at a single point, then the set

of points seeing p through R([H j]) is a singleton as

well. Second, we shall require that if x R([H j]) y

then y is within a certain distance of x. This no-

tion of distance is what we now turn to. For the

purpose of the next definition notice that if α has

the subchain property, so does α`.

Definition 24 An oval is a program of the form

α`; β, where both α and β have the subchain prop-

erty and neither contains any of the � j, j < n.



So the desired axiom is

o(p) := 〈H j〉p→ 〈α
`; β〉p (57)

Definition 25 Let K be a class of structures

〈M, {�i : i < m}, {� j : j < n}〉 such that

➀ 〈M, {�i : i < m}〉 is an m-branching tree, all

relations being partial functions.

➁ All � j are partial functions.

➂ There are ovals α`; β such that if x � j y then

x
α`;β
−→ y.

Then K is a class of oval-expanded trees.

As usual, our logic will be a i+ j + 1-modal logic.

The added modalities are all definable and used for

the eye only. It is crucial to understand that since

we did not require of the � j that they are cycle-

free we cannot use the Kleene star on programs

containing any black relations. It is used only on

white relations.

We now proceed to a proof that the logic of

a class of oval-expanded trees is decidable. As

usual it will turn out that we can construct a model

from the egregious points, from which a complex-

ity bound can be derived. We start with the logic

Treem, which comprises axioms for ▽i and >. This

logic has the finite model property and is EXP-

TIME complete. For H j we choose the logic Alt1.

Thus we start with

L := Treem ⊗
⊗

j<n

Alt1 (58)

This logic has the finite model property and is

complete with respect to finite trees. Put

Y(ϕ) := {d(pv, pw) : v,w ∈ σ(ϕ)};

{o(p) : p ∈ At(ϕ)}
(59)

Assume that ϕ is satisfiable in the logic of K.

Hence Y(ϕ) is K-satisfiable, since it adds instances

of the axioms. A fortiori, it is L-satisfiable in a

tree. Therefore, Y(ϕ);Ξ is satisfiable as well. So,

assumeM is a tree and that

〈M, β,w〉 � Ξ; Y(ϕ) (60)

We let E(ϕ) be the set of egregious points, and de-

fine �i as before: u�iv iff v is the unique egregious

point such that v ≤ v′ �i u and a(v) = a(v′). Fur-

ther, for j < n, define the following function (−)♠ j .

It is defined on the egregious points u with a � j-

successor. Assume u has a successor via � j inM.

Then by assumption there is a v such that u
α`;β
−→ v.

Now let v♠ be an egregious point below v with the

same atom. Put u ⋗ j v♠ in the new structure. By

the subchain property, it will also hold that v♠ is in

the oval of u in the new structure. ⋗ j is a partial

function since v 7→ v♠ is. It follows that egregious

points have the same atom in the new structure as

they do in the old structure (by induction on the

formulae). The new structure is now

E := 〈E(ϕ), {�i : i < m}, {⋗ j : j < n}〉 (61)

The valuation is γ(p) := β(p)∩ E(ϕ). As before, it

is shown by induction on χ ∈ S F(ϕ) that for every

egregious x:

〈E, γ, x〉 � χ ⇔ 〈M, β, x〉 � χ (62)

This is by now routine. All that needs to be shown

is that the converse of ⋗ j is a partial function as

well. Pick v♠. We have 〈M, β, v♠〉 � pv for a cer-

tain v ∈ σ(ϕ). It follows that also 〈M, β, v〉 � pv.

By construction, u⋗ j v♠ means that u is egregious,

and so u � pw for some w. Since the root satisfies

d(pv, pw), we have that every point u′ such that u′

sees a point satisfying pv must satisfy pw. Thus,

u′ ≥ u, and either u′ = u or u′ is not egregious.

This shows the claim.

Theorem 26 The modal logic of a class of oval-

expanded trees has the finite model property and

is decidable. A model for ϕ has at most 22n

points,

where n is the number of subformulae of ϕ.

12 Conclusion

As outlined ((Kracht, 1989), (Kracht, 1993),

(Kracht, 1995b), (Kracht, 1998), (Kracht, 2001),

(Kracht, 2003) and (Kracht, 2008)), the theories of

generative grammar, starting with GB can be mod-

elled entirely using modal logic over five basic re-

lations. This does not mean that there is a single

logic that describes them all (see (Kracht, 1995a)

for an extensive discussion). It means however

that the theories describe a set of grammars, and

thus a set of possible logics for grammars. Here

I have shown that—excluding economy principles

and copies e.g. (Kobele, 2006)—the entire logic

is decidable. Thus, one can effectively decide for

any pair of GB/MP theories whether they gener-

ate the same structures (not strings, as this is even

undecidable in the context free case).
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