
On the Structure of Sets Testable in the Strict Sense

Dakotah Lambert
Department of Mathematics and Computer Science

Lake Forest College
dakotahlambert@acm.org

Abstract

This paper presents purely algebraic charac-
terizations of the languages locally testable in
the strict sense (strictly local) and those piece-
wise testable in the strict sense (strictly piece-
wise). These characterizations provide poly-
nomial time algorithms to effectively decide
whether a given regular language, presented
only as its algebraic structure, belongs to the
class: linear time for strictly piecewise and
quintic time for strictly local. The techniques
described herein are broadly applicable across
the subregular hierarchy, admitting a universal
approach to deciding membership.

1 Introduction

A longstanding hypothesis in computational
phonology is that all phonological surface con-
straints are regular, and indeed that they require
significantly less computational power to recognize
or to learn than arbitrary regular languages (Rogers
et al., 2013; Heinz, 2018). Each of the many subreg-
ular language classes provides another perspective
on this space; a language within a given class has
some additional structure that can facilitate per-
ception and learning (Heinz et al., 2012; Heinz
and Rogers, 2013; Rogers et al., 2013; Lambert,
2021; Lambert et al., 2021; Johnson and De Santo,
2024), while languages not in the class do not have
this additional structure. A common question re-
gards which single class has enough structure to
be effectively learnable but weak enough structure
to contain every attested pattern, and much work
has gone into the quest to find such a class or to
find patterns witnessing that a given class is in-
sufficient (Graf, 2017; Heinz, 2018; Mayer and
Major, 2018; De Santo and Graf, 2019; Jardine,
2020). Recently, researchers have investigated the
performance of neural networks on various subreg-
ular classes, showing a bias toward simpler classes
(Bhattamishra et al., 2020; Torres and Futrell, 2023;

van der Poel et al., 2024), lending support to the
simplicity bias proposed by Lambert et al. (2021).

As abstract algebra is the study of structure, alge-
braic techniques have long been used by computer
scientists to study subregular classes of languages
(Straubing, 1985; Tilson, 1987; Almeida, 1995;
Pin, 1997; Straubing and Weil, 2021), and these
techniques have recently been applied to linguis-
tic study by Lambert (2023) and by Lambert and
Heinz (2023, 2024). A semigroup is a set alongside
an associative binary operation under which it is
closed; this kind of structure naturally represents a
formal language when the set is the set of strings
over some alphabet Σ and the operation is con-
catenation. By collapsing strings into equivalence
classes that respect the language, each regular and
subregular language is associated to a finite semi-
group. Many subregular classes are varieties of lan-
guages in the sense of Eilenberg (1976), meaning
they are completely characterized by equations that
hold for every instantiation of variables for all and
only the languages in the class (Reiterman, 1982).
The Language Toolkit software of Lambert (2024)
uses these equations to classify regular languages
with respect to a large portion of the subregular
hierarchy.

However, to be a variety, a class of languages
must be closed under the Boolean operations of
union, intersection and complement. Many classes
important to the study of natural language patterns
are not closed under all of these operations. In
this work, we primarily consider the strictly local
languages (which operate by forbidding particular
substrings, blocks of adjacent symbols) and the
strictly piecewise languages (which operate by for-
bidding particular subsequences, which may have
gaps), neither of which is closed under complemen-
tation. In order to capture these less-well-behaved
classes, one has traditionally turned to external in-
formation outside of the semigroup structure. For
instance, De Luca and Restivo (1980) first query

whether the language accepts words of the form
Σ∗wΣ∗ before applying algebraic techniques in
characterizing the strictly local languages. Fu et al.
(2011) similarly make membership queries as part
of their characterization of the strictly piecewise
languages.

We show that the strictly piecewise languages
can be captured by imposing an order over the
semigroup elements that is compatible with multi-
plication and captures some amount of membership
information while not explicitly querying accept-
ability. The limited information added by this or-
dering is not, however, sufficient to capture the
strictly local languages. For that, we add additional
structure, looking not at individual words under
concatenation, but instead at sets of words with
both concatenation and union: a join-semigroup
structure. This is a semigroup augmented with
an extra operation that forms a semilattice; the re-
sulting structure is akin to a semiring with extra
requirements on its addition, except that it need
not necessarily have neutral elements. Our primary
results are that the strictly piecewise languages are
characterized by an inequality over their associated
monoid structure:

1 ⩽ x

where 1 is the neutral element of the monoid, and
the strictly local languages are characterized by
an inequality over an associated join-semigroup
structure:

axωd ⩽ axωb ∨ cxωd.

In each of these inequalities, all variables (a, b, c, d,
and x) are universally quantified over the elements
of the algebraic structure in question. The notation
xω refers to the unique element that both is a power
of x and squares to itself; this is formally defined in
§3. Note that ∨ here refers not to a logical disjunc-
tion but to the least upper bound in the ordering
imposed by the semilattice in the join-semigroup.

2 Preliminaries

Given a finite alphabet Σ, the set Σ∗ is the set of
all finite strings over Σ. A formal language L is a
subset of Σ∗. The unique empty string is denoted
by λ and the set of nonempty strings is Σ+ =
Σ∗ − {λ}. Henceforth, the word “language” is
used unambiguously to mean “formal language”. A
semigroup is a set S alongside a binary operation,
usually indicated by adjacency, under which the

set is closed and associative: s(tu) = (st)u for all
s, t and u in S. A monoid is a semigroup with
a neutral element 1, where 1s = s = s1 for all
elements s. The free semigroup (free monoid)
over Σ is Σ+ (resp. Σ∗) under concatenation. The
neutral element of such a monoid is 1 = λ.

Define the Myhill relation for a subset L of a
semigroup S such that x ∼L y means that for every
context u v it holds that uxv ∈ L if and only if
uyv ∈ L, where u, v, x and y are elements in S.
If there is any context that distinguishes x and y,
then they are not related. The Myhill relation is
an equivalence relation: it is reflexive (x ∼L x),
symmetric (x ∼L y implies y ∼L x), and transitive
(x ∼L y and y ∼L z together imply x ∼L z).

A relation R on a semigroup S is stable if and
only if for all elements x, y and z of S it holds that
whenever x R y it is also the case that zx R zy and
xz R yz. That is, a stable relation is a relation that
is compatible with the operation of the semigroup.

The Myhill relation is a stable equivalence rela-
tion. Denote by [x]L the equivalence class of x un-
der ∼L. One can form a new semigroup Σ+/ ∼L

(or monoid, Σ∗/ ∼L) whose elements are the [x]L
and whose operation is [x]L[y]L = [xy]L. This
is the syntactic semigroup, S(L) (resp. syntactic
monoid, M(L)) of the language L. The syntactic
monoid recognizes L, in the sense that L is a union
of equivalence classes.

A deterministic finite-state automaton is a five-
tuple ⟨Q,Σ, δ, q0, F ⟩ where Q is a finite set of
states, Σ is a finite alphabet, δ : Σ → Q → Q
is a transition function, q0 ∈ Q is the initial state,
and F ⊆ Q is the set of accepting states. The
automaton is in canonical form if for all states q1
and q2 there is some string w such that the path
labeled w from q1 leads to a state in F while that
from q2 does not, or vice versa. It is trimmed if the
transition function is made partial by removing any
states from which no path leads to a state in F .

3 Varieties of Sets and Structures

In this section we present the standard definitions
of varieties of sets and pseudovarieties of algebraic
structures, which we will refer to simply as va-
rieties, and their importance in the study of for-
mal languages. We briefly demonstrate that these
notions are not equipped to handle the classes of
languages under discussion in this work.

A class C of languages associates with each fi-
nite alphabet Σ the set ΣC of languages L ⊆ Σ∗

that are in the class. A ∗-variety of languages is a
class V such that each ΣV is a Boolean algebra (i.e.
it is closed under finite unions, finite intersections,
and complementation) and is closed under both
left and right quotients in the sense of Brzozowski
(1964). Further, if φ : Γ∗ → Σ∗ is a homomor-
phism (a function such that φ(xy) = φ(x)φ(y) for
all x and y and where φ(1) = 1 where applicable)
and L is a language in ΣV , then φ−1(L) must be
in ΓV; the class is closed under inverse images of
homomorphisms. A +-variety is exactly the same,
except that φ is a nonerasing homomorphism from
Γ+ to Σ+. One often uses +-varieties when de-
pendencies are local, as, if φ is allowed to erase
symbols, then φ−1 can freely insert those same
symbols, destroying any semblance of locality.

A pseudovariety of monoids is a set V of fi-
nite monoids that is closed under finitary direct
products, quotients, and inverse images of homo-
morphisms. A pseudovariety of semigroups is
defined analogously. The “pseudo-” in pseudova-
riety regards the fact that we are considering only
finite structures. Henceforth, the prefix shall be
omitted and we will say simply “variety”. The
direct product of S and T , written S × T is a semi-
group whose elements are of the form ⟨s, t⟩ for
s ∈ S and t ∈ T . Multiplication is pointwise, so
⟨s1, t1⟩⟨s2, t2⟩ = ⟨s1s2, t1t2⟩ If both S and T are
monoids, then so too is S × T . A semigroup ⟨T, ·⟩
is a subsemigroup of a semigroup ⟨S, ·⟩ with the
same operation iff T ⊆ S and T is closed under
the semigroup operation. Finally, a semigroup T
divides a semigroup S if there is some equivalence
relation ∼ such that for some subsemigroup U of
S it holds that T = U/ ∼.

Eilenberg’s theorem (1976, Theorems 3.2–3.4)
states that there is a 1–1 correspondence between
varieties of monoids and ∗-varieties of languages,
and that there is a 1–1 correspondence between va-
rieties of semigroups and +-varieties of languages.
Reiterman’s theorem (1982, Theorem 3.1) states
that varieties of semigroups and monoids can be
characterized by systems of universally-satisfied
equations over profinite words u = v. This means
that, given the syntactic semigroup or monoid of a
language, one can determine whether it belongs to a
given variety by merely checking that the equations
are satisfied for all (finitely many) instantiations of
its variables. If a system includes k variables, then
this method decides membership in time O(nk)
where n is the number of elements in the structure.

The variables in the equations can usually be

treated as words, but in reality they represent a
completion of this space. This work will not dis-
cuss topology in depth, but we must introduce one
small notion: each element in the equations is the
limit of a Cauchy sequence of words. A sequence
is Cauchy if for any given positive distance, all but
finitely many elements of the sequence are within
that distance from one another. Following Almeida
(1995), we consider the distance between two dis-
tinct words to be 2−r(w1,w2), where r(w1, w2) is
the number of elements in the smallest monoid that
separates w1 and w2, and the distance between
a word and itself to be zero. This means that
words that are only distinct in large monoids are
“closer” than words that can be distinguished by
small monoids. In the context of regular languages,
whose syntactic monoids M are finite, this further
means that Cauchy sequences of words map to se-
quences of Myhill classes (semigroup elements)
that are eventually constant, as words with distance
below 2−|M | cannot be distinguished by M .

The simplest Cauchy sequence of words is x rep-
resenting the limit of the constant sequence an = x,
where all words are at distance 0 from each other.
The sequence an = xn! is also Cauchy;1 its limit is
often denoted by xω. In any finite semigroup, xω is
the unique element that is both a positive power of
x and idempotent (it squares to itself). Oftentimes,
the notion of “for all sufficiently long words” is
useful; in these instances one turns to elements of
the form xω.

For example, per Almeida (1989), the piece-
wise testable languages are all and only those
whose syntactic monoids universally satisfy the
equation (xy)ωx = (xy)ω = y(xy)ω (or, alter-
natively both xωx = xω and (xy)ω = (yx)ω).
And the locally testable languages are all and only
those whose syntactic semigroups universally sat-
isfy both xωyxωzxω = xωzxωyxω and xωyxω =
xωyxωyxω (Straubing, 1985). The variety induced
by a set of equations is denoted by the equations
separated by semicolon (;) within double-brackets
J. . .K. That is, we say that the variety corresponding
to piecewise testable is

J = J(xy)ω = (yx)ω;xωx = xωK(∗)

1Note that an = xn is not Cauchy, as any infinite subse-
quence will contain words whose length modulo 2|x| is 0 and
words whose length modulo 2|x| is |x|, with a distance of at
least 2−2|x|.

and the variety corresponding to locally testable is

J1 ∗ D = Jxωyxωzxω = xωzxωyxω;

xωyxω = xωyxωyxωK(+)

See Straubing (1985) for more information on va-
rieties of the form V ∗ D; this ∗ is a product of
varieties, the details of which exceed the scope of
the present work. The “(∗)” and “(+)” subscripts
are not standard notation but are used here to dis-
tinguish between monoid varieties and semigroup
varieties.

However, none of these results can immediately
apply in our situation. A language L and its com-
plement L share the same syntactic semigroup (or
monoid), which means that if S(L) ∈ V it must
hold that S(L) ∈ V. But the language classes con-
sidered in this work are not closed under comple-
mentation, so no variety can possibly characterize
them. In later sections, we discuss how imposing
additional structure allows us to capture classes that
do not have all of the closure properties required to
be a variety.

4 Strictly Piecewise Languages

In order to reason about long-distance dependen-
cies that arise in the study of natural language
constraints, Rogers et al. (2010) examined the
languages piecewise testable in the strict sense,
also called strictly piecewise. Per Heinz (2007,
2010a), these languages capture aspects of long-
distance harmony patterns that are attested in nat-
ural language, such as the sibilant harmony of
Tsuut’ina. The following examples taken from
Cook (1978) and Li (1930) demonstrate that, in
Tsuut’ina, a [+anterior] sibilant like [s] cannot pre-
cede [−anterior] sibilants like [S] at any distance,
although the reverse is not true.

1. /s̀ı-tS6́g6̀/ S̀ıtS6́g6̀ ‘my flank’
/s̀ı-tsáGà/ s̀ıtsáGá ‘my hair’
/gi-si-tĳSast/ giSitĳSast ‘they are piled up’

The strictly piecewise languages are defined in
terms of a grammar. Let Σ be a fixed finite alphabet.
A (negative) precedence grammar G is a finite set
of finite words over Σ. A word x = x1x2 . . . xn is
a subsequence of another word w, written x ⊑ w,
if and only if w = u0x1u1 . . . xnun for strings ui.
The language of the grammar G is the set of words
w ∈ Σ∗ such that x ⊑ w ⇒ x ̸∈ G. A language
is piecewise testable in the strict sense (strictly

piecewise) if and only if it is the language of a
precedence grammar. If the longest word in the
precedence grammar is at most length k, we say
that its language is piecewise k-testable in the strict
sense, or alternatively, strictly k-piecewise. Rogers
et al. (2010) provide several other characterizations
of the class, but the most useful to us here is that
the strictly piecewise languages are all and only
those that are closed under taking of subsequences.

4.1 Known Decision Procedures

Several algorithms have been proposed to deter-
mine whether a given regular language is strictly
piecewise, and, perhaps, to obtain its grammar if it
is.

Rogers et al. (2010) provide a simple grammar-
based decision procedure. The input is presented
in the form of a deterministic finite-state automa-
ton in canonical form. First, they show that if a
language is properly strictly k-piecewise, then it
must contain at least k states. Then, by enumer-
ating all possible grammars whose longest word
is at most length k, each can be converted to a
finite-state automaton and compared against the
original language. If one is equal, then that gram-
mar witnesses the fact that the language is strictly
piecewise. Otherwise, the language is not strictly
piecewise. This algorithm runs in time Θ(|Σ||Q|),
where Σ is the alphabet and Q is the set of states
in the input automaton.

Rogers and Lambert (2019a) construct the small-
est strictly piecewise superset of the given language
by allowing edges in the automaton to be skipped,
and test whether the resulting language is equal to
the original. This too runs in exponential time, as
the construction invokes nondeterminism and the
result must be determinized before comparison.

Fu et al. (2011) use some tools from algebra and
state that a language is strictly piecewise if and
only if it is “wholly nonzero” and “right annihilat-
ing”. A zero in a semigroup is an element 0 such
that 0x = 0 = x0 for all x. Let L be a language
and let η : Σ∗ → M(L) be the syntactic mor-
phism mapping w 7→ [w]L. Fu et al. (2011, Defini-
tion 5) define that a language is “wholly nonzero”
if and only if η(L) = 0. However, the syntac-
tic monoid for the strictly piecewise language Σ∗

has η(L) = 0 while η(L) does not exist.2 Per-

2Fu et al. (2011, Corollary 2) also claim that strictly local
languages are wholly nonzero. We describe strictly local
languages in a later section, but at this point it is important to
note that the language of words that begin with “a” is strictly

haps a better phrasing would be that L is wholly
nonzero if and only if w ∈ L ⇒ η(w) = 0. Fu
et al. (2011, Definition 7) define that a language
is “right annihilating” if and only if its monoid sat-
isfies xa = 0 ⇒ xya = 0. Modulo the trivial
languages Σ∗ and ∅, this provides a mechanism
by which one can decide in O(n3) time whether a
given monoid represents a strictly piecewise lan-
guage, assuming that the elements are marked for
whether they contain accepted words or rejected
words.

In the following sections, we present a different
algebraic characterization that admits a linear-time
decision procedure and more closely resembles
how varieties of languages are defined.

4.2 Closure Properties
In this section we explore the closure properties of
the class of strictly piecewise languages and see
where they fail to be a variety. From there, we
present a piece of additional structure that allows
algebraic techniques to make the distinctions nec-
essary in order to characterize the class. Finally,
we present a characterization that admits a deci-
sion procedure that operates in linear time when
given the appropriate kind of input. Recall that to
be a variety, a class C must be such that each ΣC
is a Boolean algebra closed under left- and right-
quotients, and the class must be closed under taking
inverse-images of homomorphisms.

First, the strictly piecewise languages over Σ
are not a Boolean algebra. They are not closed
under complementation. If Σ is nonempty, the lan-
guage containing only the empty string L = {λ}
is strictly piecewise, but its complement is not,
as λ ̸∈ L despite the fact that λ ⊑ w for all w.
They are, however, closed under both union and
intersection. Consider the union. Let L1 and L2

be strictly piecewise languages and consider their
union L1 ∪ L2. Let w ∈ L1 ∪ L2 and let x ⊑ w.
Then either w ∈ L1 or w ∈ L2. In the case that
w ∈ L1, because L1 is strictly piecewise, it fol-
lows that x ∈ L1 and therefore x ∈ L1 ∪ L2.
Alternatively, w ∈ L2 and, because L2 is strictly
piecewise, it follows that x ∈ L2 and therefore
x ∈ L1 ∪ L2. In either case, the union is closed
under subsequence and is therefore strictly piece-
wise. Next consider the intersection L1 ∩ L2. Let
w ∈ L1 ∩ L2 and let x ⊑ w. Then w ∈ L1 and
w ∈ L2, and as each is strictly piecewise, it follows

local but is decidedly not wholly nonzero whenever {a} ⊊ Σ,
as its syntactic monoid does not even have a zero.

that x ∈ L1 and x ∈ L2, so x ∈ L1 ∩ L2. The in-
tersection is closed under subsequence and is there-
fore strictly piecewise. As they are closed under
both union and intersection, the strictly piecewise
languages over Σ are a positive Boolean algebra.3

The strictly piecewise languages over Σ are
closed under left- and right-quotients in the sense
of Brzozowski (1964). The left quotient of a lan-
guage L over Σ by a symbol a ∈ Σ is

a−1L = {w ∈ Σ∗ : aw ∈ L}

and the right quotient is

La−1 = {w ∈ Σ∗ : wa ∈ L}.

Let a ∈ Σ, let w be in a−1L1, and let x ⊑ w.
Then aw ∈ L1 and because x ⊑ w, and therefore
ax ⊑ aw, it follows that ax ∈ L1 and x ∈ a−1L1.
Similarly, if w ∈ L1a

−1 then x ∈ L1a
−1. Both

quotients are closed under subsequence and thus
strictly piecewise.

Finally, the strictly piecewise languages are
closed under inverse images of homomorphisms.
Let φ : Γ∗ → Σ∗ be a homomorphism, a function
where φ(xy) = φ(x)φ(y). Also let L ⊆ Γ∗ be the
language

L = φ−1(L1) = {w : φ(w) ∈ L}.

Let w ∈ L and let x ⊑ w. This means that
x = x1 . . . xn for some n and there exist u0 . . . un
such that w = u0x1u1 . . . xnun. We have that
w ∈ φ−1(L1) and so it follows that φ(w) =
φ(u0)φ(x1)φ(u1) . . . φ(xn)φ(un) is in L1. As
L1 is closed under subsequence, the subsequence
φ(x1)φ(x2) . . . φ(xn) = φ(x) of φ(w) is also in
L1, so x ∈ φ−1(L1). The inverse image of φ is
closed under subsequence and therefore it is strictly
piecewise.

Definition 1 (Pin, 1997). A positive ∗-variety of
languages is a class that is closed under taking
inverse images of homomorphisms and assigns to
each alphabet Σ a set of languages that is a positive
Boolean algebra closed under the left- and right-
quotient operations.

Lemma 1. The strictly piecewise languages form
a positive ∗-variety.

3The term “positive Boolean algebra” is common in French
treatments of formal language theory. Another name for a
Boolean algebra without complementation (a structure that is
isomorphic to a class of sets that is closed under finitary union
and intersection) is a “distributive lattice”.

4.3 Ordered Semigroups and Monoids
A preorder is a relation ⩽ that is both reflexive
and transitive. Let S be a semigroup. An ordered
semigroup is a semigroup equipped with a stable
preorder. Every semigroup may be treated as an
ordered semigroup under the trivial order where
x ⩽ y means x = y.

The syntactic order of a language L is the or-
dering defined such that [s] ⩽ [t] if and only if
utv ∈ L ⇒ usv ∈ L for all strings u and v in
Σ∗ (Pin, 1997).4 This is a stable preorder. The
syntactic ordered semigroup of L is its syntactic
semigroup endowed with the syntactic order.

Varieties of ordered semigroups and monoids
are defined analogously to their unordered coun-
terparts. Pin (1995, Theorems 5.7 and 5.8) citing
to Bloom (1976) extends Eilenberg’s theorem to
provide a 1–1 correspondence between varieties of
ordered monoids (ordered semigroups) and positive
∗-varieties (resp. positive +-varieties) of languages.
Pin and Weil (1996, Theorem 3.3) extend Reiter-
man’s theorem to show that varieties of ordered
monoids or semigroups are characterized by uni-
versally satisfied sets of inequalities. In either case,
a structure belongs to the variety if and only if
the equations or inequalities are satisfied for every
instantiation of the variables involved.

As we have shown that the strictly piecewise
languages are a positive ∗-variety of languages,
this means that there is a corresponding variety of
ordered monoids.

Theorem 1. Let L be a language. The following
are equivalent.

• L is strictly piecewise

• M(L) is a finite ordered monoid in the variety
J1 ⩽ xK(∗)

Proof. First, we show that the syntactic ordered
monoid of any strictly piecewise language is finite
and satisfies the inequality 1 ⩽ x for all x. Finite-
ness is trivial, as strictly piecewise languages are
regular and the defining characteristic of a regular
language is that it has a finite syntactic monoid (Ra-
bin and Scott, 1959). Let L be a strictly piecewise

4Pin (2017) states that this definition was “regrettable” and
that the inverse order should be used instead. However, the
choice of orientation does not affect the results, and using ⩽
in this sense connects more strongly to the additional structure
imposed in the next section for strictly local languages. All
this means is that one must be careful to consult the definitions
used in any given work and to swap the roles of ⩽ and ⩾ where
appropriate.

language over Σ whose syntactic ordered monoid
is M(L). Further, let uxv ∈ L for strings u and v
in Σ∗. Then, as uv ⊑ uxv we have that uv ∈ L as
well. By the definition of the syntactic order, we
have that 1 ⩽ x.

Next, we show that any language whose syn-
tactic ordered monoid is finite and satisfies the in-
equality 1 ⩽ x for all x must be strictly piecewise.
Let L be a language whose syntactic monoidM(L)
is finite and universally satisfies the inequality and
let η : Σ∗ → M(L) be the syntactic morphism.
Let x = x1 . . . xn and w = u0x1u1 . . . xnun be
strings such that x ⊑ w. Because ⩽ is stable we
have the following.

η(x) = η(x1)η(x2) . . . η(xn)

⩽ η(u0)η(x1)η(u1) . . . η(xn)η(un)

= η(w)

By the definition of the syntactic order, then, we
have that whenever uwv ∈ L it is also the case
that uxv ∈ L. By instantiating u = v = λ we
have w ∈ L → x ∈ L. Thus, L is closed under
subsequence and is strictly piecewise.

Recall that two strings x and y map to the same
equivalence class if and only if in all contexts u v
it holds that both uxv ∈ L and uyv ∈ L, or neither
is. This means that L and its complement, L, share
the same syntactic monoid. However, their syntac-
tic ordered monoids are duals: whenever [x] ⩽ [y]
in M(L), we have that for all u and v it holds that
uyv ∈ L→ uxv ∈ L. By contrapositive, we have
uxv ̸∈ L→ uyv ̸∈ L, so [y] ⩽ [x] in M(L).

Corollary. A language L is the complement of a
strictly piecewise language if and only if its ordered
syntactic monoid is in the variety Jx ⩽ 1K(∗).

Corollary. If a language and its complement are
both strictly piecewise, then for all x, it holds that
1 ⩽ x ⩽ 1, i.e. x = 1. The only such languages
are the empty set and its complement.

As a result of this characterization, there is an al-
gorithm that decides in linear time whether a given
regular language is strictly piecewise (or the com-
plement of a strictly piecewise language), when
the language is presented as its ordered syntac-
tic monoid, or even as its syntactic order alone.
For each element x, compare x with 1. If for all
comparisons, 1 ⩽ x, then the language is strictly
piecewise. If for all comparisons, x ⩽ 1, then the
complement of the language is strictly piecewise.

This class has been studied before under many
names. The strictly piecewise languages that we
know and love are known by Pin (1997) as “the
complements of languages at the one-half level of
the Straubing–Thérien hierarchy” and the order-
theoretic characterization of this class is presented
in that work. And before that, Haines (1969) also
studied the languages closed under subsequence
(and their complements: those closed under super-
sequence).

It is also worth noting that every variety of lan-
guages is a positive variety of languages, and every
variety of semigroups (monoids) is a variety of
ordered semigroups (resp. monoids) where iden-
tities of the form x = y are replaced by the pair
of inequalities x ⩽ y and y ⩽ x. Therefore this
structure provides sufficient information to capture
varieties such as the piecewise testable and locally
testable languages as well.

5 Strictly Local Languages

Just as the strictly piecewise languages are a restric-
tion of the piecewise testable languages, the strictly
local languages are a restriction of the locally
testable languages. Introduced by McNaughton
and Papert (1971) the languages locally k-testable
in the strict sense (strictly k-local) are defined
by a grammar G ⊆ (Σ ∪ {⋊,⋉})k: a word w is
accepted if and only if every sliding window of
size k of ⋊w⋉k−1 is in G (Rogers and Pullum,
2011). A language is strictly local if and only if
it is strictly k-local for some k. Per Edlefsen et al.
(2008), approximately 75% of the more than one
hundred distinct patterns governing stress assign-
ment in natural language catalogued by Goedemans
et al. (2015) are strictly local; Rogers and Lambert
(2019a) found that 92.5% of these patterns were
covered by a conjunction of a strictly piecewise
constraint, a strictly local constraint, and a con-
straint whose complement is strictly local. The
class handles restrictions on prefixes, on suffixes,
and on what symbol clusters are permissible.

As reported by Edlefsen et al. (2008) and by
Rogers and Pullum (2011), another characteriza-
tion of the strictly local languages, adapted from
McNaughton (1974), is suffix substitution closure:
L is a strictly k-local language if and only if when-
ever axb ∈ L and cxd ∈ L are strings such that
|x| ⩾ k − 1, it also holds that axd ∈ L.

5.1 Known Decision Procedures

The strictly local languages are all and only those
in which all sufficiently long words w are constant
in the canonical finite-state automaton: there exists
a state q′ such that for all q, w maps into the set
{q′, 0}, where 0 is the unique rejecting sink state,
if any (De Luca and Restivo, 1980).

This means that, if the sink state is removed,
then there will be no cycles involving states that
correspond to sets of size greater than one in the
automaton that results from applying the power-
set construction used for determinization with an
initial state corresponding to the set of all origi-
nal states. This construction was used by Rogers
and Lambert (2019a) to facilitate both the decision
procedure and to recover the grammar, if one ex-
ists. This procedure runs in exponential time if
presented with the trimmed canonical automaton,
or in linear time if given the powerset graph.

Edlefsen et al. (2008) present a modification
of this algorithm from Caron (2000) that runs in
quadratic time when given the trimmed canonical
automaton: consider only the graph generated by
states that correspond to pairs in the original au-
tomaton. As it is deterministic, no larger sets will
ever be generated.

De Luca and Restivo (1980) use the constancy
property to show that a language that does not con-
tain two-sided ideals Σ∗wΣ∗ is strictly local if and
only if for any idempotent xω of its syntactic semi-
group, xωyxω ⊆ {xω, 0}. (If there is no 0, this
becomes xωyxω = xω.) As a two-sided ideal con-
tains every possible length-k substring, the only
strictly local language to contain such ideals is Σ∗,
so this also results in an effective characterization.
This subset property can be checked in quadratic
time when presented with a syntactic semigroup.

All of these techniques employ information not
contained in the algebraic structure of the language.
In the next section, we demonstrate why even or-
dered semigroups cannot characterize the strictly
local languages, then we present a related structure
that does contain sufficient information to capture
the class in a purely algebraic way. The resulting
characterization strongly resembles the statement
of the suffix substitution closure property.

5.2 Closure Properties

The strictly local languages over a fixed alphabet
Σ are not a Boolean algebra nor even a positive
Boolean algebra, as they are not closed under com-

plementation nor are they closed under union. To
witness lack of closure under complementation,
consider the set L1 = Σ∗ − Σ∗abΣ∗, the strictly
2-local language in which the ab substring does
not occur. Its complement then, is Σ∗abΣ∗, but
as discussed in the preceding section, the only
strictly local language to contain a two-sided ideal
is Σ∗ itself. Every possible substring appears in
L1, so every word must be accepted for this to be
strictly local, but bb is not. The reversal of L1 is
L2 = Σ∗ − Σ∗baΣ∗, another strictly 2-local lan-
guage, in which the ba substring does not occur. To
witness lack of closure under union, we consider
L1 ∪L2. This is the language in which either there
is no ab or there is no ba; accepted words are all
and only those that do not contain both ab and ba.
This does not satisfy suffix substitution closure, as
a(bk)b ∈ L and b(bk)a ∈ L but a(bk)a ̸∈ L for all
k ⩾ 1.

This means that the strictly local languages can-
not be captured by a variety of (ordered) semi-
groups. A variety of semigroups is insufficient
because a language and its complement share the
same semigroup. A variety of ordered semigroups
is insufficient because, while a language and its
complement can be distinguished, the inequalities
used entail closure under union. Recall that x ⩽ y
means that uyv ∈ L⇒ uxv ∈ L for all u, v ∈ Σ∗.
Let L1 and L2 be languages universally satisfying
the inequality and let u, v, and y be strings such
that uyv ∈ L1 ∪ L2. Then either uyv ∈ L1 and by
the inequality we have uxv ∈ L1, or uyv ∈ L2 and
by the inequality we have uxv ∈ L2. In either case,
uxv ∈ L1 ∪ L2, and the inequality is satisfied.

However, the strictly local languages over Σ are
closed under intersection. Let L1 and L2 be any
strictly k-local languages over Σ, and let axb and
cxd be words in L1 ∩ L2 such that |x| ⩾ k − 1.
Then, because each of axb and cxd are in each of
L1 and L2, it follows by suffix substitution closure
that axd is in both L1 and L2. That is, axd ∈
L1 ∩ L2 and suffix substitution closure holds. The
result is strictly k-local.

The class is also closed under left and right quo-
tients. Let L be a strictly k-local language over Σ
and let axb and cxd be words in s−1L for some
s ∈ Σ where |x| ⩾ k− 1. Then saxb and scxd are
in L, which by suffix substitution closure means
that saxd ∈ L and axd ∈ s−1L. Suffix substi-
tution closure holds, so s−1L is strictly k-local.
Similarly, Ls−1 is strictly k-local.

The class is not closed under inverse images of

arbitrary homomorphisms; indeed the tier-based
strictly local languages are defined as the inverse
image of a strictly local language under a particular
kind of erasing homomorphism (Heinz et al., 2011;
Lambert, 2023). But the class is closed under in-
verse images of nonerasing homomorphisms. Let
φ : Γ+ → Σ+ be a (nonerasing) homomorphism
Also let L be a strictly k-local language over Σ∗,
and let axb and cxd be words in φ−1(L) such that
|x| ⩾ k − 1. Then φ(axb) = φ(a)φ(x)φ(b) ∈ L
and φ(cxd) = φ(c)φ(x)φ(d) ∈ L, and because
φ is nonerasing, |φ(x)| ⩾ |x| ⩾ k − 1. By suf-
fix substitution closure, this means that φ(axd) =
φ(a)φ(x)φ(d) ∈ L and therefore axd ∈ φ−1(L).
This demonstrates closure under inverse images of
nonerasing homomorphisms.

Indeed, the strictly local languages satisfy a
stronger condition. The following is adapted from
Polák (2001). For a set S define S□ to be the set
of all nonempty finite subsets of S∗, and S⊞ to be
the set of all nonempty finite subsets of S+. Let
ψ : Γ⊞ → Σ⊞ be a (nonerasing) homomorphism
where the operation is concatenation lifted to sets,
and define for L ⊆ Σ∗ an inverse:

ψ[−1](L) = {w ∈ Γ+ : ψ({w}) ⊆ L}

Let L ⊆ Σ∗ be strictly k-local, and let axb and cxd
be words in ψ−1(L) such that |x| ⩾ k−1. Observe
the following (omitting ψ({w}) if w = λ):

ψ({axb}) = ψ({a})ψ({x})ψ({b}) ⊆ L

ψ({cxd}) = ψ({c})ψ({x})ψ({d}) ⊆ L

As every word in ψ({x}) is at least as
long as x, it holds that by suffix substitution
ψ({a})ψ({x})ψ({d}) ⊆ L and therefore it holds
that axd ∈ ψ[−1](L). We have that ψ[−1] is strictly
k-local.
Definition 2 (Polák, 2001). A conjunctive +-
variety of languages is a class that is closed under
ψ[−1] for homomorphisms of the form ψ : Γ⊞ →
Σ⊞ and that assigns to each alphabet Σ a set of
languages that is closed under intersection and the
left- and right-quotient operations.
Lemma 2. The strictly local languages form a
conjunctive +-variety.

A conjunctive ∗-variety is defined analogously,
using □ in place of ⊞.

5.3 Join-Semigroups
The following concepts are adapted from Polák
(2001) and Klíma and Polák (2019). A join-

semigroup is a structure ⟨S, ·,∨⟩ such that ⟨S, ·⟩ is
a semigroup and ⟨S,∨⟩ is a join-semilattice (a com-
mutative semigroup where all elements are idem-
potent) alongside a distributive property: for all x,
y, and z in S it holds that x(y ∨ z) = xy ∨ xz
and (x ∨ y)z = xz ∨ yz.5 A join-monoid is a
join-semigroup where ⟨S, ·⟩ is a monoid.

The usual ordering relation for a join-semilattice
induces an order on the structure: x ⩽ y means
x ∨ y = y. This is stable under multiplication. Let
x ⩽ y and let a be an element. Then x∨y = y and
so a(x ∨ y) = ay. By the distributive property, we
have ax ∨ ay = ay and thus ax ⩽ ay. Similarly,
xa ⩽ ya. The order is clearly also stable under
join, as a∨ (x∨y) = a∨y and (x∨y)∨a = y∨a.

The syntactic join-semigroup of a language
L ⊆ Σ∗, is the join-semigroup ⟨Σ⊞, ·,∪⟩/≈L,
where A ≈L B means that for all sets U and
V in Σ□ it holds that UAV ⊆ L if and only if
UBV ⊆ L. This is a set-based analogy to the My-
hill relation. As before, Σ□ and Σ⊞ are defined to
be the set of nonempty finite subsets of Σ∗ and Σ+,
respectively. The syntactic join-monoid is defined
analogously. Note that for a regular language, this
structure is finite, as one can consider the elements
η(w) of the syntactic semigroup or monoid rather
than the strings w themselves.

Polák (2001) extends Eilenberg’s and Reit-
erman’s theorems to provide a 1–1 correspon-
dence between varieties of join-monoids (join-
semigroups) and conjunctive ∗-varieties (resp. con-
junctive +-varieties) of languages and to provide
a means for characterization by a system of in-
equalities. The inequalities are of the form x ⩽
y1∨y2∨· · ·∨yn for n ⩾ 1, and can be interpreted
as requiring that whenever it holds for all strings u
and v that uyiv ∈ L for all 1 ⩽ i ⩽ n, it also holds
that uxv ∈ L.

As we have shown that the strictly local lan-
guages are an conjunctive +-variety of languages,
this means that there is a corresponding variety of
join-semigroups. To get there, we first must show
that all sufficiently long words can be written in
terms of an idempotent.

Lemma 3. Let S be a finite semigroup and let x
be a sequence of elements of S of length k > |S|.

5Polák (2001) used the term idempotent semiring, with ∨
being +, but this is an abuse of terminology, as, properly, the
definition of a semiring requires that both operations impose a
monoid structure, with the neutral element of addition being
0 such that 0x = 0 = x0 for all x. However, there appears
to be no standard terminology for two interacting semigroups
rather than two interacting monoids.

Then x = aeωb for some a, b and c in S.

Proof. If any individual xi is idempotent, then
x = (x1 . . . xi−1)(xi)(xi+1 . . . xk) and we are
done. Otherwise, consider the prefixes x[i] =
x1 . . . xi. By the pigeonhole principle, there ex-
ist i < j such that x[i] = x[j] = x[i](xi+1 . . . xj).
Let a = x[i] and e = xi+1 . . . xj . By iteratively
expanding, we have a = ae = aee = · · · = aeω.
Finally, let b = xj+1 . . . xk if j < k else eω. We
then have x = aeωb.

Theorem 2. Let L be a language. The following
are equivalent.

• L is strictly local

• The syntactic join-semigroup of L is in the
variety Jaxωd ⩽ axωb ∨ cxωdK(+)

Proof. First, we show that the syntactic join-
semigroup of any strictly local language is finite
and satisfies the inequality axωd ⩽ axωb ∨ cxωd.
Finiteness is trivial, as strictly local languages are
regular. Let L be a strictly local language over
Σ. Then there is some k for which L is strictly k-
local. Further, let uaebv and ucedv belong to L for
strings a, b, e, u, and v where η(e) = η(e)η(e).
That is, η(e)ω = η(e). Then ua(ek)bv and
uc(ek)dv are in L, as they are Myhill-equivalent
to uaebv and ucedv, respectively. By suffix-
substitution, it follows that ua(ek)dv ∈ L, that
uaedv ∈ L. This demonstrates satisfaction of the
inequality.

Next, we show that any language whose syn-
tactic join-semigroup, Z, is finite and satisfies the
inequality must be strictly local. Specifically, we
show that it is strictly k-local for k = |Z|+ 2. Let
L be a regular language with finite syntactic join-
semigroup Z satisfying the inequality, and let axb
and cxd be words in L such that |x| ⩾ k − 1. In
the case that η(x) = η(x)ω, the inequality directly
guarantees that axd ∈ L. It is not necessarily the
case that all long words are themselves idempotent,
but, by Lemma 3, we can rewrite x as x1ex2 where
η(e) = η(e)ω to find that ax1ex2d ∈ L. This
means that axd ∈ L, that suffix substitution clo-
sure is satisfied, and hence L is strictly k-local.

A consequence of this is an effective algorithm
for deciding whether a language is strictly local: for
all instantiations of the five variables a, b, c, d and
xω, where xω is restricted to idempotents, verify
that axωd ⩽ axωb ∨ cxωd. This is not a particu-
larly efficient algorithm; naïvely it runs in quintic

time in the size of the syntactic join-semigroup, as
there are five variables. However, it does provide
a purely algebraic characterization of the strictly
local languages, unifying their analysis with that
of other classes in the piecewise-local subregular
hierarchy.

It also allows for a new proof of the obvious fact
that strictly local languages are locally testable.

Proposition 1. Let L be a language whose syntac-
tic join-semigroup Z belongs to

Jaxωd ⩽ axωb ∨ cxωdK(+),

i.e. let L be strictly local. Then L is locally testable,
i.e. Z belongs to

J1 ∗ D = Jxωyxωzxω = xωzxωyxω;

xωyxω = xωyxωyxωK(+).

Proof. Let L be a strictly local language and let
Z be its syntactic join-semigroup. In the follow-
ing analyses, for clarity, we will parenthesize the
shared idempotent that enables substitution of suf-
fixes. Consider the element xωyxω for all x and y.
We have by strict locality and by the idempotence
of both xω and ∨ that

xωyxωyxω ⩽ xωy(xω)xω ∨ xω(xω)yxω

= xωyxω.

And we also have that

xωyxω ⩽ xωy(xω)yxω ∨ xωyxωy(xω)xω

= xωyxωyxω.

As each is less than or equal to the other,

xωyxω = xωyxωyxω

Next, consider an element of the form xωyxωzxω.
Let e = xω. We have by strict locality and by the
idempotence of both e = xω and ∨ that

eyeze ⩽ e(e)zeyeze ∨ ez(e)yeze
= ezeyeze

⩽ ezeyez(e)ye ∨ ezeyezey(e)e
= ezeyezeye.

By the preceding argument this final form reduces:

xω(zxωy)xω(zxωy)xω = xωzxωyxω

So, xωyxωzxω ⩽ xωzxωyxω by transitivity. By
a similar argument, the reverse holds as well and
the two are equal. Both equations that characterize
local testability are universally satisfied.

Without using any external knowledge about
how the classes are defined or how they interact,
we showed purely by symbolic manipulation that
every language locally testable in the strict sense is
locally testable.

5.4 Positive Varieties as Conjunctive Varieties

Recall that a conjunctive variety is like a positive
variety except that closure under union is not re-
quired but additionally the class must be closed
under inverse images homomorphisms of the form
ψ : A□ → B□ (or ψ : A⊞ → B⊞). It turns out that
every positive variety is a conjunctive variety of the
same type.

Theorem 3. Let V be a positive ∗-variety (+-
variety). Then V is also a conjunctive ∗-variety
(resp. +-variety). Moreover, the characteristic in-
equalities are identical.

Proof. Let V be a positive variety and let ψ be a
homomorphism from A□ or A⊞ to B□ or B⊞, as
appropriate. Also let L ⊆ BV . For all words w ∈
A∗, the output ψ({w}) is completely characterized
by the output ψ({a}) for a ∈ A. Because B□

and B⊞ contain only finite sets, it is the case that
ψ({a}) is finite for all a ∈ A. Construct Â by
creating a symbol ai for each a ∈ A and each
1 ⩽ i ⩽ |ψ({a})|.

As there are finitely many elements of A and
each maps to finitely many objects, there are
finitely many functions f that map each pair ⟨a, i⟩
(with a ∈ Â and 1 ⩽ i ⩽ |ψ({a})|) to an ele-
ment of ψ({a}). Let F be the collection of these
functions. Construct ψ̂f : Â

∗ → B∗ such that
ψ̂f (ai) = f(a, i). As V is a positive variety, we
have that each ψ̂−1

f (L) ∈ ÂV . The intersection

of this family, X =
⋂

f∈F ψ̂
−1
f (L), is also in ÂV ,

as positive varieties are closed under finitary inter-
sections. The intersection accounts for the restric-
tion that ψ({w}) ⊆ L, rather than capturing only
nondisjointness.

Moreover, as every permutation of the indices is
handled by some f ∈ F , it is the case that ai ∼X

aj for all appropriate i and j. Let # be the stable
subrelation of the Myhill relation where ai # aj
for all i and j but no other elements are related.
Let S be the syntactic ordered semigroup (ordered
monoid) of X; then S/# is a quotient of S and
therefore the corresponding language is in AV .

Finally, that the characteristic inequalities are
identical is from the definition. An inequality for

an ordered variety of the form x ⩽ y means that
uyv ∈ L ⇒ uxv ∈ L, which is exactly what
x ⩽ y means under the semilattice ordering.

Corollary. The strictly piecewise languages are
the conjunctive ∗-variety that corresponds to the
variety of join-monoids J− = J1 ⩽ xK(∗).

It is for this reason that we chose to use the
syntactic order as presented by Pin (1997) rather
than the inverse order as used by Pin (2017).

This means that the syntactic join-monoid or
join-semigroup provides sufficient information to
capture varieties such as the piecewise testable and
locally testable languages as well as positive vari-
eties such as the strictly piecewise languages.

6 Constructing Join-Semigroups

For completeness, this section briefly describes
the construction of the syntactic join-semigroup
or join-monoid detailed by Polák (2001). Let L
be a language over Σ recognized by a determin-
istic finite-state automaton A in canonical form,
whose state set is Q and whose transition function
is δ : Σ → Q→ Q. Define L(q) to be the language
of the state q, the set of permissible continuations
from that state. Fix for each equivalence class [w]
in Σ+ (Σ∗) under ∼L a shortest representative w
such that η(w) = [w] and let W be this set of rep-
resentatives. Construct a modified automaton with
state set

Q̂ =
{⋂
q∈S

L(q) : S ⊆ Q
}

and transition function

δ̂ : P(W)− {∅} → Q̂→ Q̂

where δ̂({a})(
⋂

q∈S L(q)) =
⋂

q∈S L(δ(a)(q))
for S ⊆ Q. This transition function is implicitly
extended to (singleton sets of) finite words in the
typical way, and is then extended again to arbitrary
sets by δ̂∗(T)(q) =

⋂
w∈T δ̂({w})(q). The syntac-

tic join-semigroup (join-monoid) of the language is
the transition semigroup of this automaton (Polák,
2001), i.e the structure

⟨{δ̂∗(T) : T ∈ P(W)− {∅}}, ·,+⟩

where · is δ̂∗(T1)δ̂∗(T2) = δ̂∗(T2) ◦ δ̂∗(T1) and
+ is δ̂∗(T1) + δ̂∗(T2) = δ̂∗(T1 ∪ T2). Whether it
is the join-semigroup or join-monoid depends on
whether [λ] is included in W .

1

2 3

0

2
3

a

b, c

a, b
c

b

c

a

a, b, c

a

b c

Figure 1: A strictly local language L, states extended.

6.1 Example Computation

Consider for example the strictly 2-local language
L over Σ = {a, b, c} consisting of all and only
those words which begin with ‘a’, end with ‘c’,
and do not contain “ca” as a substring. Its canon-
ical finite-state automaton is shown in Figure 1
restricted to states {0, 1, 2, 3}. State 1 corresponds
to the language itself. In state 2, the initial a has
been accounted for, so its language is simply the
set of continuations which end with ‘c’ and do not
contain “ca” as a substring. In state 3, the initial
‘a’ has been accounted for and a ‘c’ has just been
read: its language is the set of continuations which
end with neither ‘a’ nor ‘b’ and do not contain “ca”
as a substring (much like state 2, modulo λ), with
the added restriction that the continuation not start
with ‘a’, as, if it does, this creates a “ca” substring
in the broader word. Finally state 0 is the rejecting
sink.

The only nonempty subset of states whose lan-
guages intersect to yield a language not already
accounted for is {2, 3}, whose intersection is the
language of state 3 minus the empty string. The
state 2

3 represents this state in Q. The empty inter-
section is Σ∗ and is unaffected by transformations
and therefore omitted.

By calculating the transition semigroup in the
usual way, one finds that there are five elements in
the syntactic semigroup of L, with representatives
“a”, “b”, “c”, “ac”, and “ca”. These five words
represent every possible function over the original
state set {0, 1, 2, 3} that arise from any word in Σ+.
These elements multiply as shown in Table 1.

For each state q in Q and for each nonempty
subset of semigroup elements, follow the paths
labeled by each semigroup element in the subset,
and construct the intersection of the resulting states.
For example, {a, c} acts on state 2 by having ‘a’
go to state 2 while ‘c’ goes to state 3; to simulate
having done both of these at once, the resulting
state is {2, 3} (represented in Figure 1 as 2

3). In

Table 1: Multiplication of semigroup elements of L,
idempotents highlighted.

a b c ac ca

a a a ac ac ca
b b b c c ca
c ca b c ca ca
ac ca a ac ca ca
ca ca ca ca ca ca

{b} {c} {a} {ac}

{a, b} {b, c} {a, ac} {c, ac}

{a, c}

{ca}

Figure 2: The join-semilattice structure that orders L.
Multiplicative idempotents boxed.

the end, there are ten distinct actions arising from
nonempty sets of semigroup elements, arranged
into the semilattice shown in Figure 2. The join
operation x ∨ y finds the least upper bound of x
and y; e.g. {ac} ∨ {b} = {a, c}.

Finally, one can verify that for any for sets A, B,
C, and D and for any idempotent set Xω, it holds
that

AXωD ∨AXωB ∨CXωD = AXωB ∨CXωD.

For instance, consider A = {ac}, B = {c}, C =
D = {b}, and Xω = {b, c}:

AXωB = {ac}{b, c}{c} = {acbc, accc} = {ac}
CXωD = {b}{b, c}{b} = {bbb, bcb} = {b}
AXωD = {ac}{b, c}{b} = {acbb, accb} = {a}

We verify that {ac} ∨ {b} = {a, c} and that {a} ∨
({ac} ∨ {b}) = {a} ∨ {a, c} = {a, c}. In other
words, AXωD ⩽ AXωB ∨ CXωD as desired.
The same holds when considering any other valid
instantiation of the variables, so the language is
strictly local.

7 Conclusions and Prospects

We presented augmentations of the syntactic semi-
group (monoid) structure to accommodate the addi-
tional information that is needed in order to capture

two fundamental classes in the subregular hierar-
chy that are not closed under the Boolean opera-
tions. The syntactic join-semigroup (join-monoid)
has enough information to capture conjunctive vari-
eties of languages, which may not be closed under
union or complementation. As computational lin-
guistics research emphasizes intersection-closed
classes without regard to whether they are also
closed under the other Boolean operations, these
techniques may prove more valuable in this space.
Specifically, we provided purely algebraic charac-
terizations for the strictly piecewise languages:

J1 ⩽ xK(∗)

and the strictly local languages:

Jaxωd ⩽ axωb ∨ cxωdK(+).

Recall that inequalities in the join-semigroup or
join-monoid structure are notational shorthand for
equalities, so one could also say that the strictly
piecewise languages are characterized by

J1 ∨ x = xK(∗)

and the strictly local languages by

Jaxωd ∨ axωb ∨ cxωd = axωb ∨ cxωdK(+).

The latter perspective is preferred from the perspec-
tive of universal algebra, but the former offers a
simpler statement of the characterizations.

Following Lambert (2023), the characterization
of the strictly local languages extends to a charac-
terization for tier-based strictly local languages of
Heinz et al. (2011), by omitting [λ] where possible
in the construction of the syntactic join-semigroup,
even when that class contains some neutral letters.

This also paves the way toward characterization
and analysis of several other classes introduced in
the computational linguistics literature. Using the
techniques introduced herein alongside those of
Lambert (in press), one might capture the multiple-
tier-based strictly local languages of De Santo and
Graf (2019). Join-semigroups may also help to cap-
ture the interval-based strictly piecewise languages
of Graf (2017) or the melody-local languages of Jar-
dine (2020). The decision procedures derived from
the algebraic characterization could then be used
to efficiently catalogue attested language patterns.
For now, we leave open the question of whether
these classes are conjunctive varieties, and, if so,
what their characterizing inequalities are.

Known classes that are too restrictive can be ex-
tended to a more general class by removing one or
more equations, perhaps after inserting redundant
ones. For instance, piecewise testable languages
satisfy both (xy)ωx = (xy)ω and y(xy)ω =
(xy)ω, while the broader class of R-trivial lan-
guages (see Brzozowski and Fich, 1984) requires
only the former. One can also extend a class, e.g.
J−, by forming a product variety, e.g. J− ∗ D,
which characterizes the “strictly piecewise-local”
languages of Rogers and Lambert (2019b), also
known as “generalized subsequence languages”
(Heinz, 2010b) or “languages of dot-depth at most
one-half”. The resulting structures can instantiate
learning algorithms using ideas from García and
Ruiz (2006) and Heinz et al. (2012).

Another area of future work concerns the ex-
tension of these techniques to transducers. Lam-
bert and Heinz (2023, 2024) explored the algebraic
structure of phonological maps and some of the
classes used to classify them. For each subregu-
lar ∗-variety (+-variety), one can say that a finite-
state transducer belongs to an analogous class of
functions if and only if its syntactic monoid (resp.
semigroup) belongs to the corresponding variety
of algebraic structures. Lambert and Heinz (2023)
demonstrated that the “input strictly local” func-
tions of Chandlee et al. (2014) have definite struc-
ture, a proper subclass of strictly local. Understand-
ing how to derive a join-semigroup structure from
a transducer will allow us to understand the class of
functions that has the richer structure of the strictly
local languages. It will also show whether the func-
tion class that Burness and McMullin (2020) refer
to as strictly piecewise captures all and only those
processes that are structurally strictly piecewise, or
if there is another related class that does so.

Acknowledgments

The author thanks three anonymous reviewers for
their contributions to the clarity of this document.

References
Jorge Almeida. 1989. Equations for pseudovarieties.

In Formal Properties of Finite Automata and Appli-
cations: Proceedings of the LITP Spring School on
Theoretical Computer Science, volume 386 of Lec-
ture Notes in Computer Science, pages 148–164.

Jorge Almeida. 1995. Finite Semigroups and Univer-
sal Algebra, volume 3 of Series in Algebra. World
Scientific, Singapore.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the ability and limitations of transformers
to recognize formal languages. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Proceessing (EMNLP), pages 7096–7116.
Association for Computational Linguistics.

Stephen L. Bloom. 1976. Varieties of ordered algebras.
Journal of Computer and System Sciences, 13(2):200–
212.

Janusz Antoni Brzozowski. 1964. Derivatives of regular
expressions. Journal of the ACM, 11(4):481–494.

Janusz Antoni Brzozowski and Faith Ellen Fich. 1984.
On generalized locally testable languages. Discrete
Mathematics, 50:153–169.

Phillip Burness and Kevin McMullin. 2020. Modelling
non-local maps as strictly piecewise functions. In
Proceedings of the Society for Computation in Lin-
guistics, volume 3, pages 493–495, New Orleans,
Louisiana.

Pascal Caron. 2000. Families of locally testable
languages. Theoretical Computer Science, 242(1–
2):361–376.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2014. Learning strictly local subsequential functions.
Transactions of the Association for Computational
Linguistics, 2:491–503.

Eung-Do Cook. 1978. The synchronic and diachronic
status of Sarcee γy. International Journal of Ameri-
can Linguistics, 44(3):192–196.

Aldo De Luca and Antonio Restivo. 1980. A charac-
terization of strictly locally testable languages and
its application to subsemigroups of a free semigroup.
Information and Control, 44(3):300–319.

Aniello De Santo and Thomas Graf. 2019. Structure
sensitive tier projection: Applications and formal
properties. In Raffaella Bernardi, Greg Kobele, and
Sylvain Pogodalla, editors, Formal Grammar 2019,
volume 11668 of Lecture Notes in Computer Science,
pages 35–50. Springer Verlag.

Matt Edlefsen, Dylan Leeman, Nathan Myers, Nathaniel
Smith, Molly Visscher, and David Wellcome. 2008.
Deciding strictly local (SL) languages. In Proceed-
ings of the 2008 Midstates Conference for Undergrad-
uate Research in Computer Science and Mathematics,
pages 66–73.

Samuel Eilenberg. 1976. Automata, Languages, and
Machines, volume B. Academic Press, New York,
New York.

Jie Fu, Jeffrey Heinz, and Herbert G. Tanner. 2011. An
algebraic characterization of strictly piecewise lan-
guages. In Mitsunori Ogihara and Jun Tarui, editors,
Theory and Applications of Models of Computation,
volume 6648 of Lecture Notes in Computer Science,
pages 252–263. Springer Berlin / Heidelberg.

https://doi.org/10.1007/Bfb0013118
https://doi.org/10.1142/2481
https://doi.org/10.1142/2481
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.1016/s0022-0000(76)80030-x
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1016/0012-365X(84)90045-1
https://doi.org/10.7275/xtrm-ny22
https://doi.org/10.7275/xtrm-ny22
https://doi.org/10.1016/S0304-3975(98)00332-6
https://doi.org/10.1016/S0304-3975(98)00332-6
https://doi.org/10.1162/tacl_a_00198
https://doi.org/10.1016/S0019-9958(80)90180-1
https://doi.org/10.1016/S0019-9958(80)90180-1
https://doi.org/10.1016/S0019-9958(80)90180-1
https://doi.org/10.1007/978-3-662-59648-7_3
https://doi.org/10.1007/978-3-662-59648-7_3
https://doi.org/10.1007/978-3-662-59648-7_3
https://doi.org/10.1007/978-3-642-20877-5_26
https://doi.org/10.1007/978-3-642-20877-5_26
https://doi.org/10.1007/978-3-642-20877-5_26

Pedro García and José Ruiz. 2006. Learning in varieties
of the form V ∗ LI from positive data. Theoretical
Computer Science, 362(1–3):100–114.

R. W. N. Goedemans, Jeffrey Heinz, and Harry van der
Hulst. 2015. StressTyp2.

Thomas Graf. 2017. The power of locality domains in
phonology. Phonology, 34(2):385–405.

Leonard H. Haines. 1969. On free monoids partially
ordered by embedding. Journal of Combinatorial
Theory, 6(1):94–98.

Jeffrey Heinz. 2007. Inductive Learning of Phonotactic
Patterns. Ph.D. thesis, University of California, Los
Angeles.

Jeffrey Heinz. 2010a. Learning long-distance phonotac-
tics. Linguistic Inquiry, 41(4):623–661.

Jeffrey Heinz. 2010b. String extension learning. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics, pages 897–
906, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frank Plank, editors, Phonological Typology, vol-
ume 23 of Phonetics and Phonology, chapter 5, pages
126–195. Mouton de Gruyter.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing. 2012.
Learning in the limit with lattice-structured hypothe-
sis spaces. Theoretical Computer Science, 457:111–
127.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints for phonol-
ogy. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Short
Papers, volume 2, pages 58–64, Portland, Oregon.
Association for Computational Linguistics.

Jeffrey Heinz and James Rogers. 2013. Learning subreg-
ular classes of languages with factored deterministic
automata. In Proceedings of the 13th Meeting on
the Mathematics of Language, pages 64–71, Sofia,
Bulgaria. Association for Computational Linguistics.

Adam Jardine. 2020. Melody learning and long-
distance phonotactics in tone. Natural Language
& Linguistic Theory, 38:1145–1195.

Jacob K. Johnson and Aniello De Santo. 2024. Online
learning of ITSL grammars. In Proceedings of the
Society for Computation in Linguistics, volume 7,
pages 257–267, Irvine, California.

Ondrěj Klíma and Libor Polák. 2019. Syntactic struc-
tures of regular languages. Theoretical Computer
Science, 800:125–141.

Dakotah Lambert. 2021. Grammar interpretations and
learning TSL online. In Proceedings of the Fifteenth
International Conference on Grammatical Inference,
volume 153 of Proceedings of Machine Learning
Research, pages 81–91.

Dakotah Lambert. 2023. Relativized adjacency. Jour-
nal of Logic, Language and Information, 32(4):707–
731.

Dakotah Lambert. 2024. System description: A
theorem-prover for subregular systems: The Lan-
guage Toolkit and its interpreter, plebby. In Func-
tional and Logic Programming: 17th Annual Sympo-
sium, FLOPS 2024, volume 14659 of Lecture Notes
in Computer Science, pages 311–328, Kumamoto,
Japan. Springer, Singapore.

Dakotah Lambert. in press. Multitier phonotactics with
logic and algebra. Phonology.

Dakotah Lambert and Jeffrey Heinz. 2023. An algebraic
characterization of total input strictly local functions.
In Proceedings of the Society for Computation in
Linguistics, volume 6, pages 25–34, Amherst, Mas-
sachusetts.

Dakotah Lambert and Jeffrey Heinz. 2024. Algebraic
reanalysis of phonological processes described as
output-oriented. In Proceedings of the Society for
Computation in Linguistics, volume 7, pages 129–
138, Irvine, California.

Dakotah Lambert, Jonathan Rawski, and Jeffrey Heinz.
2021. Typology emerges from simplicity in represen-
tations and learning. Journal of Language Modelling,
9(1):151–194.

Fang-Kuei Li. 1930. A study of Sarcee verb-stems. In-
ternational Journal of American Linguistics, 6(1):3–
27.

Connor Mayer and Travis Major. 2018. A challenge
for tier-based strict locality from Uyghur backness
harmony. In Annie Foret, Greg Kobele, and Sylvain
Pogodalla, editors, Formal Grammar 2018, volume
10950 of Lecture Notes in Computer Science, pages
62–83. Springer.

Robert McNaughton. 1974. Algebraic decision pro-
cedures for local testability. Mathematical Systems
Theory, 8(1):60–76.

Robert McNaughton and Seymour Aubrey Papert. 1971.
Counter-Free Automata. MIT Press.

Jean-Éric Pin. 1995. A variety theorem without com-
plementation. Russian Mathematics (Izvestija vuzov.
Matematika), 39:80–90.

Jean-Éric Pin. 1997. Syntactic semigroups. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook
of Formal Languages: Volume 1 Word, Language,
Grammar, pages 679–746. Springer-Verlag, Berlin.

https://doi.org/10.1016/j.tcs.2006.05.032
https://doi.org/10.1016/j.tcs.2006.05.032
http://st2.ullet.net/
https://doi.org/10.1017/S0952675717000197
https://doi.org/10.1017/S0952675717000197
https://doi.org/10.1016/s0021-9800(69)80111-0
https://doi.org/10.1016/s0021-9800(69)80111-0
https://doi.org/10.1162/ling_a_00015
https://doi.org/10.1162/ling_a_00015
https://www.aclanthology.org/P10-1092
https://doi.org/10.1515/9783110451931-005
https://doi.org/10.1515/9783110451931-005
https://doi.org/10.1016/j.tcs.2012.07.017
https://doi.org/10.1016/j.tcs.2012.07.017
https://aclanthology.org/P11-2011
https://aclanthology.org/P11-2011
https://www.aclanthology.org/W13-3007
https://www.aclanthology.org/W13-3007
https://www.aclanthology.org/W13-3007
https://doi.org/10.1007/s11049-020-09466-y
https://doi.org/10.1007/s11049-020-09466-y
https://doi.org/10.7275/scil.2159
https://doi.org/10.7275/scil.2159
https://doi.org/10.1016/j.tcs.2019.10.020
https://doi.org/10.1016/j.tcs.2019.10.020
https://proceedings.mlr.press/v153/lambert21a.html
https://proceedings.mlr.press/v153/lambert21a.html
https://doi.org/10.1007/s10849-023-09398-x
https://doi.org/10.1007/978-981-97-2300-3_16
https://doi.org/10.1007/978-981-97-2300-3_16
https://doi.org/10.1007/978-981-97-2300-3_16
https://doi.org/10.7275/Q54B-MG07
https://doi.org/10.7275/Q54B-MG07
https://doi.org/10.7275/scil.2137
https://doi.org/10.7275/scil.2137
https://doi.org/10.7275/scil.2137
https://doi.org/10.15398/jlm.v9i1.262
https://doi.org/10.15398/jlm.v9i1.262
https://doi.org/10.1007/978-3-662-57784-4_4
https://doi.org/10.1007/978-3-662-57784-4_4
https://doi.org/10.1007/978-3-662-57784-4_4
https://doi.org/10.1007/bf01761708
https://doi.org/10.1007/bf01761708
https://doi.org/10.1007/978-3-642-59136-5_10

Jean-Éric Pin. 2017. The dot-depth hierarchy, 45 years
later. In Stavros Konstantinidis, Nelma Moreira,
Rogério Reis, and Jeffrey Shallit, editors, The Role of
Theory in Computer Science, pages 177–201. World
Scientific.

Jean-Éric Pin and Pascal Weil. 1996. A Reiterman theo-
rem for pseudovarieties of finite first-order structures.
Algebra Universalis, 35:577–595.

Libor Polák. 2001. Syntactic semiring of a language.
In Mathematical Foundations of Computer Science
2001, volume 2136 of Lecture Notes in Computer
Science, pages 611–620.

Michael Oser Rabin and Dana Scott. 1959. Finite au-
tomata and their decision problems. IBM Journal of
Research and Development, 3(2):114–125.

Jan Reiterman. 1982. The Birkhoff theorem for finite
algebras. Algebra Universalis, 14:1–10.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Visscher, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in
the strict sense. In Christian Ebert, Gerhard Jäger,
and Jens Michaelis, editors, The Mathematics of Lan-
guage: Revised Selected Papers from the 10th and
11th Biennial Conference on the Mathematics of Lan-
guage, volume 6149 of LNCS/LNAI, pages 255–265.
FoLLI/Springer.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2013. Cog-
nitive and sub-regular complexity. In Glyn Morrill
and Mark-Jan Nederhof, editors, Formal Grammar:
17th and 18th International Conferences FG 2012
Opole, Poland, August 2012, Revised Selected Papers
and FG 2013 Düsseldorf, Germany, August 2013,
Proceedings, volume 8036 of Lecture Notes in Com-
puter Science, pages 90–108. Springer-Verlag.

James Rogers and Dakotah Lambert. 2019a. Extract-
ing Subregular constraints from Regular stringsets.
Journal of Language Modelling, 7(2):143–176.

James Rogers and Dakotah Lambert. 2019b. Some
classes of sets of structures definable without quan-
tifiers. In Proceedings of the 16th Meeting on the
Mathematics of Language, pages 63–77, Toronto,
Canada. Association for Computational Linguistics.

James Rogers and Geoffrey K. Pullum. 2011. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Informa-
tion, 20(3):329–342.

Howard Straubing. 1985. Finite semigroup varieties
of the form V ∗ D. Journal of Pure and Applied
Algebra, 36:53–94.

Howard Straubing and Pascal Weil. 2021. Varieties. In
Jean-Éric Pin, editor, Handbook of Automata Theory,
volume 1, chapter 16, pages 569–614. EMS Press,
Berlin, Germany.

Bret Tilson. 1987. Categories as algebra: An essential
ingredient in the theory of monoids. Journal of Pure
and Applied Algebra, 48(1–2):83–198.

Charles Torres and Richard Futrell. 2023. L0-
regularization induces subregular biases in LSTMs.
In Proceedings of the Society for Computation in Lin-
guistics, volume 6, pages 394–396, Amherst, Mas-
sachusetts.

Sam van der Poel, Dakotah Lambert, Kalina Kostyszyn,
Tiantian Gao, Rahul Verma, Derek Andersen, Joanne
Chau, Emily Peterson, Cody St. Clair, Paul Fodor,
Chihiro Shibata, and Jeffrey Heinz. 2024. ML-
RegTest: A benchmark for the machine learning of
regular languages. Journal of Machine Learning Re-
search, 25(283):1–45.

https://doi.org/10.1142/9789813148208_0008
https://doi.org/10.1142/9789813148208_0008
https://doi.org/10.1007/BF01243597
https://doi.org/10.1007/BF01243597
https://doi.org/10.1007/3-540-44683-4_53
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1007/BF02483902
https://doi.org/10.1007/BF02483902
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.15398/jlm.v7i2.209
https://doi.org/10.15398/jlm.v7i2.209
https://doi.org/10.18653/v1/W19-5706
https://doi.org/10.18653/v1/W19-5706
https://doi.org/10.18653/v1/W19-5706
https://doi.org/10.1007/s10849-011-9140-2
https://doi.org/10.1007/s10849-011-9140-2
https://doi.org/10.1007/s10849-011-9140-2
https://doi.org/10.1016/0022-4049(85)90062-3
https://doi.org/10.1016/0022-4049(85)90062-3
https://doi.org/10.4171/automata-1/16
https://doi.org/10.1016/0022-4049(87)90108-3
https://doi.org/10.1016/0022-4049(87)90108-3
https://doi.org/10.7275/5ss3-d749
https://doi.org/10.7275/5ss3-d749
https://jmlr.org/papers/v25/23-0518.html
https://jmlr.org/papers/v25/23-0518.html
https://jmlr.org/papers/v25/23-0518.html

	Introduction
	Preliminaries
	Varieties of Sets and Structures
	Strictly Piecewise Languages
	Known Decision Procedures
	Closure Properties
	Ordered Semigroups and Monoids

	Strictly Local Languages
	Known Decision Procedures
	Closure Properties
	Join-Semigroups
	Positive Varieties as Conjunctive Varieties

	Constructing Join-Semigroups
	Example Computation

	Conclusions and Prospects

