
The Computational Complexity of Quantifier Raising

Ned Sanger
University of California, Los Angeles

nedsanger@ucla.edu

Abstract

Quantifier Raising (QR) has been a workhorse
of the syntax-semantics interface for nearly
50 years, but its computational properties are
barely known. To fill this gap, I study the time
complexity of the following decision problem:
given a tree whose leaves are assigned semantic
types, can repeated applications of QR lead to a
well-typed logical form (LF)? The main result
is that this problem is NP-complete, meaning
that there exists no general and efficient algo-
rithm for building interpretable LFs using QR
(assuming P ̸= NP). The problem remains
NP-complete even if one constrains QR by lim-
iting the type of traces, limiting the number of
atomic semantic types, banning parasitic scope,
and banning cyclic QR.

1 Introduction

Quantifier Raising (QR) is the tool for repairing
type mismatches and analyzing scope in LF-based
approaches to semantic interpretation. But despite
almost fifty years of widespread use since May
(1977) introduced it, little is known about its com-
putational properties. In order to improve our for-
mal understanding of QR, this paper therefore an-
swers some basic but unresolved questions about
its complexity:

• Given a logical form that is not well-typed,
how difficult is it to determine whether re-
peated applications of QR can turn it into one
that is?

• Does the difficulty depend on the number of
atomic types one uses? Does it depend on
the possibility of higher-order traces, or the
possibility of parasitic scope, or the possibility
of QR applying to an element multiple times?

• Do we need any purely formal constraints on
quantifier raising?

My answer to the first question above is: very dif-
ficult (NP-complete). My answer to the second
is: no, none of those constraints affects the diffi-
culty (as measured by asymptotic, worst-case time
complexity). My answer to the third question is:
yes, we need a formal constraint that prevents QR
from targeting λ-abstractions that were themselves
created by QR.

To date, the only formal study of QR is Barker
(2020). This paper looks at QR in the same spirit
that Barker did and builds on the foundation he
laid.

The rest of this paper is organized as fol-
lows. Section 2 provides a formal definition of
logical forms, of Quantifier Raising, and of the
decision problem LF REPAIR: given a possibly ill-
typed logical form, is there a way to make it well-
typed by repeatedly applying QR? The section also
contains proofs of a few useful facts about logical
forms. Section 3 proves that LF REPAIR belongs to
the complexity class NP, following Barker (2020)
closely. Section 4 proves that LF REPAIR is NP-
hard by a reduction from the directed Hamiltonian
cycle problem. Section 5 makes some concluding
observations.

I assume that the reader is familiar with basic
notions from computational complexity theory, in
particular the theory of NP-completeness. For a
general introduction, see Papadimitriou (1994) and
Arora and Barak (2009). For overviews focused
on linguistic issues, see Pratt-Hartmann (2010) and
Barton et al. (1987).

2 Preliminaries and Notation

2.1 Types, Logical Forms, Contexts
Given a finite set A of atomic types, the set of types
over it is

T := A |T → T.

In the rest of the paper, lowercase greek letters
(α, β, γ, . . .) will range over types. As usual, ‘→’

associates to the right. I often drop the ‘→’, so
that αβγ, for example, is a shorthand for the type
α → (β → γ). I use α

m−→ β as a shorthand for

α → · · · → α︸ ︷︷ ︸
m times

→ β

A useful way to stratify the set of types is by as-
signing each type an order. If we think of types as
describing functions, then the order quantifies how
complex that function’s arguments are. Formally,
the order of an atomic type p is ord(p) = 1, and
the order of a complex type α → β is

ord(α → β) = max(1 + ord(α), ord(β)).

Types of order n describe functions whose argu-
ments have types of order less than n. Some exam-
ples: if e, t ∈ A, then ord(e) = 1, ord(eet) = 2,
and ord

(
(et)et

)
= 3.

Let {Vα}α∈T be a disjoint family of sets in-
dexed by T, and let

V =
⋃
α∈T

Vα.

The members of each set Vα = {x, y, . . .} are
variables of type α. When the type of a variable
x is relevant, I will write it as xα to indicate that
x ∈ Vα.

The set L of logical forms is

L := T |V |L • L |λV L.

In words, an LF is either a type, a variable, the
concatenation of two LFs, or a λ-abstraction over
an LF. An abstraction-free LF is one built from
only the first three cases, i.e., an LF that contains
no λ-abstractions. It’s usual in semantics to place
typed lexical items rather than types themselves at
the leaves of logical forms. But since this paper is
only concerned with type coherence, the definition
above is simpler.

The constructor ‘•’ associates to the left. It is also
commutative, so there is no difference between the
LFs α • β and β • α. Nodding at linguistic practice,
I sometimes call variables traces.

If e, t ∈ A, then

e • (eet • e) and (et)t • λxe (e • (eet • xe))

are each examples of logical forms. I sometimes
represent LFs as unordered binary trees in a way
familiar to linguists, e.g.

e
eet e

(et)t

λxe

e

eet xe

Later on I will need to talk about LFs with a
“hole” that can be plugged by another LF. I call
these contexts. Formally, the set of contexts is

C = [] |λV C |L • C.

If Γ is a context and ∆ is an LF (or context), then
Γ[∆] is the LF (or context) that results from substi-
tuting ∆ for [] in Γ. In section 4, it will be useful
to have notation for repeatedly nesting a context
inside itself: if Γ is a context, let Γ0 = [] and
Γn = Γ[Γn−1]. In the rest of the paper, capital
Greek letters (Γ, ∆, etc.) will denote either LFs or
contexts.

The typing function τ : L → T is the following
partial map:

τ(Γ) =

α if Γ = α,

β if Γ = ∆ • Θ, τ(∆) = αβ

and τ(Θ) = α,

αβ if Γ = λxα∆[xα] and
τ(∆[α]) = β,

undefined otherwise.

The second and third cases correspond respec-
tively to the semantic rules of function applica-
tion and predicate abstraction in Heim and Kratzer
(1998). When τ(Γ) = α holds, I usually write
Γ : α or say that Γ has type α. If x ∈ Vα, then
τ(xα) is technically undefined, but I will abuse
terminology below and still say that x has type α.

An LF Γ is well typed iff τ(Γ) is defined. The
two LFs mentioned above, e • (eet • e) and (et)t •

λxe (e •(eet •xe)), are well typed because they each
have type t.

Notice that if Γ has an unbound trace, i.e., a
variable that is not in the scope of a λ-abstraction,
then it cannot be well typed. The definition of
the typing function therefore enforces a form of
the empirically motivated proposal that remnant
movement must reconstruct (Huang, 1993; Bhatt
and Dayal, 2007).

2.2 Quantifier Raising
The surface syntax of a sentence is often ill-typed
and therefore not suitable for semantic interpreta-

tion. The classic example comes from transitive
sentences with a quantifier in object position (“the
critic panned every film”), which correspond to the
ill-typed LF e • (eet • (et)t). Function application
can’t combine the type of a transitive verb, eet,
with the type of a generalized quantifier, (et)t.

In this case, we know what LF we would like to
interpret (Heim and Kratzer, 1998, 178–79). The
proper semantic argument for the quantifier in ob-
ject position is an abstraction over its context, also
known as its continuation, so the LF we want is

(et)t︸︷︷︸
quantifier

• λxe (e • (eet • xe))︸ ︷︷ ︸
continuation

.

Quantifier Raising is just an operation for mov-
ing from ill-typed LFs like e • (eet • (et)t) to the
well-typed one above. Given an LF Γ[∆[Θ]], QR
“raises” Θ so that it becomes ∆’s sister, puts a
variable in Θ’s old position, and adds a binder
for that variable between Θ and ∆. The result
is Γ[Θ • λx∆[x]]. In the case above,

Γ = [], ∆ = e • (eet • []), Θ = (et)t.

My goal is to study QR in its most general form.
Accordingly, I won’t constrain it by—just to name
a few possibilities—imposing scope islands, scope
economy (Fox, 2000), or limits on the types of
traces (Poole, 2024). Whatever empirical merits
they might have, these restrictions would only re-
duce the flexibility of the mathematical results in
this paper. More importantly, to understand the
effect (if any) that specific constraints have on com-
plexity, it’s necessary to first understand the com-
plexity of the general case.

That said, one formal constraint is necessary
to keep QR from overgenerating: the operation
should be disallowed from targeting abstractions,
that is, LFs of the form λxΓ. To see what can go
wrong without this constraint, look at figure 1. The
leftmost tree shows an innocent-looking analysis of
the sentence Mary gave John the book. It might not
seem like QR can do anything interesting to this
tree, because no subtree has a complex enough type
to take scope. But the ability to raise abstractions
lets us create a scope-taker.

The middle tree is the result of applying QR to
gave, moving it to a position right below Mary and
leaving a trace of type eet. The rightmost tree is the
result of quantifier raising the abstraction created
by the previous step to the root of the tree and
leaving a trace of type e. Not only is the resulting

LF well typed, but (assuming natural denotations
for the lexical items) it means gave (j) (m) (b), that
is, the book gave John Mary.

Completely unrestricted QR therefore allows us
to create scope-takers on the fly, even in sentences
where nothing ought to be taking scope, and the
semantic effect is disastrous. It does not behave in
the way linguists expect QR to behave and it lacks
good theoretical properties. The definition below
therefore explicitly prevents QR from targeting ab-
stractions.1

Definition 2.1. Quantifier Raising is the smallest
binary relation →QR ⊆ L × L such that for all con-
texts Γ and ∆, all LFs Θ that are not abstractions,
and all fresh variables x,

Γ[∆[Θ]] →QR Γ[Θ • λx∆[x]].

The reflexive, transitive closure of →QR is →∗
QR.

Because this operation targets not just quanti-
fiers but any part of an LF at all, the name “Quan-
tifier Raising” is misleading. “Scope Taking,” as
Barker (2020) says, is more accurate. But like him,
I’ve stuck with the familiar name because it is en-
trenched.

Now we can define the central decision problem
of this paper:

LF REPAIR

Given a set of atomic types A, a type α,
and a variable- and abstraction-free LF
Γ, is there an LF ∆ of type α such that
Γ →∗

QR ∆?

The name comes from the idea that ill-typed LFs
are “broken,” and that repairing them involves rais-
ing the scope-takers and finding appropriate trace
types in such a way that the result is well-typed.

Here is an example. Let A = {e, t} and let Γ be
the ill-typed LF[

(et)e •
[
(((et)et)et)et • et

]]
•
[
eet • (et)t

]
.

1A more elegant way to ban QR of abstractions is to change
the structure of LFs so that no constituent corresponds to an
abstraction in the first place. Variable binding would instead
be handled by an index on moved items, so that QR would
relate an LF Γ[∆[Θ]] to something like Γ[Θx • ∆[x]] (Heim,
1997; Heim and Kratzer, 1998, 187–88). But this approach
can’t easily accomodate parasitic scope (Barker, 2007). Since
I want a formalization of quantifier raising that covers all of
its uses in linguistics, I’ve therefore stuck with tradition and
used λ-abstraction to bind variables.

e
Mary

eeet
gave

e
John

e
the book

e
Mary

eeet
gave

λReet

Reet e
John

e
the book

λReet

Reet e
John

e
the book

λxe

e
Mary eeet

gave
xe

Figure 1: Raising abstractions is dangerous.

Is there a ∆ of type t such that Γ →∗
QR ∆? The

answer, not immediately obvious, is yes:

Γ →QR (et)t • λxe
[[
(et)e •

[
(((et)et)et)et • et

]]
•
[
eet • xe

]]
→QR (et)t •

[
(((et)et)et)et • λQ(et)etλxe[[

(et)e •
[
Q(et)et • et

]]
•
[
eet • xe

]]]
,

and this last LF has type t.

2.3 Normalization
QR’s purpose is to let a function take some portion
of its semantic context as an argument. But it’s
also possible for the raised element to become an
argument rather than a function of its context. For
instance: e • et →QR e • λxe(xe • et). Such steps
are licit but pointless—they will never help turn an
ill-typed LF into a well-typed one. In general, if
an LF has the form ∆[Π • λxΣ[x]], where Π has
type α and λxΣ[x] has type αβ, then I call the
abstraction λxΣ[x] vacuous. A well-typed LF is
normalized iff it contains no vacuous abstractions.

The next lemma justifies the label “vacuous.”

Lemma 2.1. Let Γ be a variable- and abstraction-
free LF. If Γ →∗

QR ∆ and ∆ : α, then there exists a
normalized LF ∆′ : α such that Γ →∗

QR ∆′.

Proof. If ∆ isn’t already normalized, then it con-
tains a vacuous abstraction and therefore has the
form Θ[Π • λxβ Σ[xβ]], where λxβ Σ[xβ] has type
βγ and Π has type β. Like ∆, the LF Θ[Σ[Π]]
also has type α, but it contains one fewer vacuous
abstraction.

By definition, QR cannot target an abstraction.
And since ∆ is well-typed, no step in the derivation
Γ →∗

QR ∆ raises xβ outside the scope of its binder

λxβ . The derivation Γ →∗
QR ∆ therefore has the

following form:

Γ →∗
QR Θ1[Σ1[Π1]]

→QR Θ1[Π1 • λxβ Σ1[x
β]]

→QR Θ2[Π2 • λxβ Σ2[x
β]]

→QR · · ·
→QR Θn[Πn • λxβ Σn[x

β]],

where the Θi and Σi are contexts; the Πi are LFs;
and Θn = Θ, Σn = Σ, and Πn = Π. Then

Γ →∗
QR Θ1[Σ1[Π1]]

→QR Θ2[Σ2[Π2]]

→QR · · ·
→QR Θn[Σn[Πn]]

is a valid derivation of Θ[Σ[Π]] from Γ.
By repeating this process, we can eliminate vac-

uous abstrations one by one until we obtain a nor-
malized LF ∆′ : α such that Γ →∗

QR ∆′.

The following lemma, needed in section 4, limits
the trace types that need to be considered when
repairing an LF.

Lemma 2.2. Suppose Γ is a variable- and
abstraction-free LF, ∆ is a normalized LF, and
Γ →∗

QR ∆. Let m be the maximum order among
Γ’s leaves. If xα is a trace occurring in ∆, then
ord(α) < m− 1.

Proof. Let n be the maximum order of all of ∆’s
traces, and suppose n ≥ m− 1. Consider a trace
xα of order n. The λ-abstractor that binds xα must
have a sister Π, and we can therefore write ∆ =

Θ[Π • λxαΣ[x]].2 Because ∆ is normalized, Π’s
type has the form (α → τ(Σ[α])) → β for some
β, and so

ord(τ(Π)) > ord(α) + 1 = n+ 1. (1)

Every node within the subtree Π is either (i) a
leaf of order at most m ≤ n + 1, (ii) function
application of two elements of order at most n+ 1,
or (iii) an abstraction over a variable of order at
most n. It follows (by an induction from the leaves
to the root) that every node of Π has order at most
n+1, so ord(τ(Π)) ≤ n+1. This contradicts (1).
Therefore n < m− 1.

The two lemmas above make it easier to deter-
mine if an LF Γ can be repaired using QR. It’s
sufficient to search for normalized LFs where the
order of the trace types is below an upper bound
coming from Γ.

2.4 Directed Graphs and Hamiltonian Cycles

The proof in section 4 uses some terminology from
graph theory. As a reminder, a directed graph (or
digraph) is a pair ⟨V,E⟩, where V is a finite set
of vertices and E ⊆ V × V a set of edges. The
first component of an edge is its tail, the second
its head. Given a vertex v, its indegree deg−(v)
and outdegree deg+(v) are the number of edges of
which v is a head and tail, respectively.

A Hamiltonian cycle in a digraph is a sequence
of edges e1, e2, . . . , en such that for 0 < i < n, the
head of ei is the tail of ei+1, the head of en is the
tail of e1, and every vertex occurs exactly once as
a head and a tail of an edge in the sequence. The
following decision problem is NP-complete (see,
e.g., Garey and Johnson 1979):

DIRECTED HAMILTONIAN CYCLE

Given a digraph, does it have a Hamilto-
nian cycle?

3 LF REPAIR is in NP

This goal in this section is to prove that LF REPAIR

is in NP. This result would be a simple corollary
of the proof in Barker (2020) that LF REPAIR is de-
cidable, but that proof contains an error (explained
below).3 The rest of this section therefore provides

2Technically, there could be more abstractions intervening,
so that I should write Θ[Π • λyβ1

1 . . . λy
βk
k λxα Σ[xα]]. But

this doesn’t affect the rest of the proof.
3Barker points out the mistake himself in a footnote added

after the early-access version of the paper was published.

a corrected proof, and uses it to show that LF RE-
PAIR is in NP. Because many of the details from
Barker’s paper don’t need to change, the proofs in
this section move quickly; see his paper for further
information.

The high-level idea, following Barker’s lead, is
to introduce a type-logical grammar, QRT (Quan-
tifier Raising with Types), such that (i) provability
in QRT is in NP, and (ii) LF REPAIR is reducible in
polynomial time to provability in QRT.

The axiom and inference rules of QRT are shown
in figure 2. Γ, ∆ and Θ represent LFs or contexts,
and A and B represent types. λ↑ and λ↓ are sub-
ject to the restriction that the LF Θ not be a λ-
abstraction (or equivalently, that Θ be either a type
or of the form Σ • Ω). This restriction, which is
the only difference between the version of QRT
in this paper and the one in Barker (2020), will
crucially guarantee that theorem 3.2 holds. Unre-
stricted raising—which is what caused the error
in Barker’s proof—wreaks havoc when combined
with the commutativity of ‘•’. For instance, it lets
us freely swap an inner and outer context above a
‘•’-node, which results in massive overgeneration:

Γ[∆[A • B]] ⊢ C
λ↓

Γ[A • λx∆[x • B]] ⊢ C
λ↓

(λx∆[x • B]) • λy Γ[A • y] ⊢ C
λ↑

∆[(λy Γ[A • y]) • B]) ⊢ C
λ↑

∆[Γ[A • B]] ⊢ C

This issue is not really different from the one in
figure 1, and my solution is similar: forbidding λ↑

and λ↓ from targeting abstractions.
Figure 3 shows a small QRT proof.
The next theorem shows that a cut-elimination

theorem holds for QRT sequents that are
abstraction-free, that is, sequents Γ ⊢ A where
Γ contains no λ-abstractions.

Theorem 3.1. Every abstraction-free theorem of
QRT has a CUT-free proof.

Proof. By the normal method of permuting cuts up-
ward. When the cut formula is not principal in both
premises of CUT, the permutations are straightfor-
ward.

The subtle case is when the cut formula is prin-
cipal in both premises:

Γ[A] ⊢ B
→R

λxΓ[x] ⊢ AB

∆ ⊢ A Θ[B] ⊢ C
→L

Θ[AB • ∆] ⊢ C
CUT

Θ[λxΓ[x] • ∆] ⊢ AB

AX
A ⊢ A

Γ ⊢ A ∆[B] ⊢ C
→L

∆[AB • Γ] ⊢ C

Γ[A] ⊢ B
→R

λxΓ[x] ⊢ AB

Γ[Θ • λx∆[x]] ⊢ A
λ↑

Γ[∆[Θ]] ⊢ A

Γ[∆[Θ]] ⊢ A
λ↓

Γ[Θ • λx∆[x]] ⊢ A

Γ ⊢ A ∆[A] ⊢ B
CUT

∆[Γ] ⊢ B

Figure 2: Axiom and Rules of QRT.

AX
e ⊢ e

AX
et ⊢ et

AX
t ⊢ t →L

(et)t • et ⊢ t
→L

(et)t • (eet • e) ⊢ t
→R

λx ((et)t • (eet • x)) ⊢ et
AX

t ⊢ t
→L

(et)t • λx ((et)t • (eet • x)) ⊢ t
λ↑

(et)t • (eet • (et)t) ⊢ t

Figure 3: An example QRT derivation.

If ∆ is not an abstraction, then we can replace the
cut with two smaller cuts:

∆ ⊢ A Γ[A] ⊢ B
CUT

Γ[∆] ⊢ B Θ[B] ⊢ C
CUT

Θ[Γ[∆]] ⊢ C
λ↓

Θ[λxΓ[x] • ∆]

If ∆ is an abstraction, then it turns out there is no
need to eliminate the cut, because it couldn’t have
occurred in the proof of an abstraction-free theo-
rem. To see why, first define a sequent to be stuck if
its left-hand side has the form Σ[Φ•Ψ] where Φ and
Ψ are both abstractions. A straightforward induc-
tion shows that if a sequent in a QRT proof is stuck,
then every subsequent sequent—and in particular
the conclusion—is stuck too. Since Θ[λxΓ[x] • ∆]
is stuck whenever ∆ is an abstraction, the proof’s
conclusion cannot be abstraction-free.

Theorem 3.2. Every abstraction-free theorem of
QRT has a CUT- and λ↓-free proof.

Proof. Take a CUT-free proof of an abstraction-
free theorem, and consider an occurrence of λ↓ of
maximal depth. Because the proof’s conclusion is
abstraction-free, there must be a lower occurrence
of λ↑ eliminating the abstraction introduced by λ↓.
If the occurrence of λ↑ is immediately below, then
the application of λ↓ is eliminable:

Γ[∆[Θ]] ⊢ A
λ↓

Γ[Θ • λx∆[x]] ⊢ A
λ↑

Γ[∆[Θ]] ⊢ A

; Γ[∆[Θ]] ⊢ A

Otherwise we can permute the occurrence of λ↓

downward across any occurrence of →L, →R, and
λ↑ until it meets up with a suitable lower occur-
rence of λ↑ and can be removed. (The requirement
that λ↑ and λ↓ not target abstractions guarantees
that it is possible to permute λ↓ across λ↑ whenever
needed.)

By repeating this procedure, we can eliminate
each occurrence of λ↓ one by one. Since the
procedure doesn’t introduce any new applications
of CUT, the end result is a CUT- and λ↓-free
proof.

Theorem 3.3. Deciding whether an abstraction-
free sequent is a theorem of QRT is in NP.

Proof. Theorem 3.2 shows that every abstraction-
free theorem of QRT has a proof that uses only
the rules AX, →L, →R, and λ↑. Reading the rules
from bottom to top, →L and →R each eliminate
at least one ‘•’ or ‘→’, and no rule introduces new
ones. The number of occurrences of →L and →R
in a CUT- and λ↓-free proof is therefore bounded
from above by the total number of ‘•’s and ‘→’s in
the conclusion. λ↑ can only apply if a λ-abstraction
was introduced by a higher occurrence of →R,
and so the number of times it is used is likewise
bounded from above by the number of ‘•’s and ‘→’s
in the conclusion.

Every abstraction-free theorem of QRT therefore
has a proof whose size is polynomial in the theo-
rem’s length and which can serve as an efficient
witness of theoremhood.

Given an abstraction-free LF Γ and a type A,
there is an LF ∆ of type A such that Γ →∗

QR ∆ if
and only if QRT proves Γ ⊢ A. See the appendix
to Barker (2020) for a proof, which applies without
modifications to the version of QRT used in this
paper. LF REPAIR therefore has the same time com-
plexity as provability (of abstraction-free sequents)
in QRT, which is what we set out to show:

Theorem 3.4. LF REPAIR is in NP.

4 LF REPAIR is NP-Hard

4.1 Encoding Hamiltonian Cycles in LFs

This section describes a polynomial-time reduction
from DIRECTED HAMILTONIAN CYCLE to LF RE-
PAIR. Let G = ⟨V,E⟩ be a connected digraph with
n vertices and m edges such that at least one vertex
has indegree greater than one and at least one vertex
has outdegree greater than one. It’s convenient to
assume that the vertices of G are some initial seg-
ment of the natural numbers, i.e. V = {1, . . . , n}.
I construct an instance of LF REPAIR whose answer
is “yes” iff G has a Hamiltonian cycle. The method
resembles the one in Krantz and Mobile (2001),
who encode DIRECTED HAMILTONIAN CYCLE in
the multiplicative fragment of linear logic.

The set of atomic types for the instance consists
of a type v for each v ∈ V , plus the additional
types a, b, c, d, e, and t. That is,

A = {1, . . . , n} ∪ {a, b, c, d, e, t}.

Below, I’ll use the following abbreviations for
types:

Ev
u := (a → u) → b → v,

Vv := (a → v) → c → v,

Gv := (a → t) → d → v,

Gv := (a → v) → e → t.

I’ll now construct an LF Γ such that Γ →∗
QR

∆ for some ∆ : t iff G has a Hamiltonian cycle.
Without lost of generality, I assume the cycle begins
at the vertex 1. To make the construction more
concrete, I will illustrate it as I go using the digraph
in figure 4. Notice that the graph has a Hamiltonian
cycle: (1, 3), (3, 2), (2, 4), (4, 1).

I’ll build up Γ in four layers, constructing an
LF Γ1 and three contexts Γ2, Γ3, Γ4, such that
Γ = Γ4[Γ3[Γ2[Γ1]]]. The plan is as follows. Γ1

will contain a leaf Ev
u for each edge (u, v) of G, as

well as a leaf Vv for every vertex. Each one of these
leaves will need to undergo QR to have a chance of

making Γ into a well-typed LF. The context Γ2 will
have n positions to which n of the leaves Ev

u from
Γ1 can undergo QR (as well as n positions for the
Vv); by design, the types will properly compose if
and only if the n corresponding edges in G form a
Hamiltonian cycle.

The m − n leaves Ev
u corresponding to edges

not occurring in the cycle will also need a place
that they can QR to. The context Γ4 will provide
m − n positions for them. Since a Hamiltonian
cycle enters and exits every vertex exactly once,
for each vertex v there are deg−(v)− 1 edges with
head v and deg+(v)− 1 edges with tail v that do
not occur in the cycle. Γ3 will accordingly contain
deg+(v) − 1 leaves Gv and deg−(v) − 1 leaves
Gv. For each Ev

u that QRs into Γ4, Gu and Gv will
QR right below and above it in Γ4. This last step is
needed to make composition run smoothly.

Now for the technical details. Let
(u1, v1), . . . , (um, vm) be G’s edges, and let

Γ1 = (a
m+n−−−→ 1) • Ev1

u1
• . . . • Evm

um
• V1 • . . . • Vn.

For the digraph in figure 4, Γ1 would be

a
9−→ 1 E3

1

E4
2

E2
3

E4
3

E1
4

V1

V2

V3

V4

The intention is that every Ev
u and Vv will take

scope and leave a trace of type a. The leaf of type
a

m+n−−−→ 1 will consume these traces one by one,
producing a subtree of type 1.

Let ∆ = [] • b • c and let Γ2 = ∆n. For the
digraph in figure 4, Γ2 = ∆4, which looks like

[] b
c

b

c

b

c

b

c

1

2

3

4

Figure 4: A directed graph.

If Ev
u and Vv each QR directly below the occur-

rences of b and c respectively in ∆[u], then the
resulting subtree will have type v. In other words,
if we feed u as an “input” to the context ∆, and
then apply the “resources” Ev

u and Vv, the “output”
will have type v. ∆ is therefore a gadget for simu-
lating the traversal of an edge from u to v. The left
side of figure 5 illustrates the simulation with E3

1

and V3.
By nesting n copies of ∆, Γ2 can simulate a

path of length n in G. Notice that simulating the
traversal of an edge with head v requires raising an
occurrence of Vv. Since Γ will contain exactly one
leaf Vv for each vertex v, the paths Γ2 can simulate
are therefore those that visit each vertex exactly
once, that is, Hamiltonian paths.
Γ3 is most complicated. For each v ∈ V , let

Φv = [] • Gv • . . . • Gv︸ ︷︷ ︸
deg+(v)− 1 times

, Ψv = [] • Gv • . . . • Gv︸ ︷︷ ︸
deg−(v)− 1 times

and let

Φ = Φ1[Φ2[. . .Φn]] and Ψ = Ψ1[Ψ2[. . .Ψn]].

Furthermore, let

k =
n∑

v=1

(deg+(v)− 1) + (deg−(v)− 1)

= 2m− 2n.

Then Γ3 = Ψ[Φ[a
k−→ 1 → t]] • []. In the case of

the digraph in figure 4 (where only Φ3 and Ψ4 are
nontrivial), Γ3 would be

a
2−→ 1 → t G3

G4

[]

To make Γ well typed, each Gu and Gv will need
to undergo QR and leave behind a trace of type a.
The leaf of type a

k−→ 1 → t will consume these
traces, resulting in a subtree of type 1 → t.

Finally, let Σ = [] • d • b • e, and let Γ4 = Σm−n.
In the case of the digraph in figure 4, Γ4 would be

[] d
b

e

The context Σ is a gadget that works similar to
∆. If Gu, Ev

u, and Gv each QR directly below the
occurrences of d, b, and e respectively in Σ[t], the
resulting subtree will have type t. The right side of
figure 5 illustrates the procedure with G3, E4

3, and
G4. Together Σ[t], Gu, and Gv work as a kind of
disposal mechanism for the leaf Ev

u, providing it
a place to which it can QR and returning a tree of
type t.
Γ4 consists of m− n nested copies of Σ. When

G has a Hamiltonian cycle, Γ1 will contain m− n
leaves Ev

u coming from edges not used in the cycle.
Γ4’s purpose is to act as a waste bin of sorts for
these unused edges. Notice that “disposing” of a
leaf Ev

u requires raising both a leaf Gu and a leaf
Gv from Γ3. As mentioned earlier, for each vertex
v there are deg−(v) − 1 edges with head v and
deg+(v)− 1 edges with tail v that do not occur in
the cycle. Γ3 therefore provides exactly the right
number of leaves Gu and Gv to dispose of all the
unused edges.

Figure 6 shows the final LF Γ = Γ4[Γ3[Γ2[Γ1]]].
Notice that Γ will always be linear in the size of the
input, and can be constructed in polynomial time.

4.2 Correctness

It remains to show that the reduction is correct, i.e.,
that G has a Hamiltonian cycle iff the answer to
the LF REPAIR-instance constructed in the previous

[] b
c

3

c → 3

a → 3

3

b → 3

a → 1

1 λxa

E3
1

b

λya

V3

c

[] d
b

e

t

e → t

a → 4

4

b → 4

a → 3

3

d → 3

a → t

t λxa

G3

d

λya

E4
3

b

λza

G4

e

Figure 5: Simulating the traversal of an edge (left) and disposing of an unused edge (right). Interior nodes are
annotated with the type of the subtree they dominate.

subsection is “yes”.
First the easy direction.

Theorem 4.1. If G has a Hamiltonian cycle, then
there exists an LF ∆ : t such that Γ →∗

QR ∆.

Proof. Let

(u1, u2), (u2, u3), . . . , (un−1, un), (un, u1)

be a Hamiltonian cycle in G. Without loss of gen-
erality, assume that u1 = 1. We can derive an
appropriate ∆ : t from Γ as follows. Note that
every QR step in the derivation below will leave a
trace from Va.

First QR Eu2
u1

and Vu2 directly below the lowest
occurrence of b and c respectively in Γ2 (compare
the left side of figure 5). Then QR Eu3

u2
and Vu3

directly below the second-lowest b and c respec-
tively in Γ2. Continue this process for the rest of
the cycle, finishing with Eu1

un
and Vu1 .

Exactly m− n leaves of the form Ev
u in Γ1 are

still waiting to QR, each one of them corresponding
to an edge not used in the Hamiltonian cycle. For
each vertex v, exactly deg−(v)− 1 of these leaves
correspond to an edge with head v and deg+(v)−1
to an edge with tail v.

For each b in Γ4, QR one of the m−n remaining
leaves Ev

u’s directly below it. Then QR an instance
of Gu and Gv from Γ3 directly below the adjacent
occurrences of d and e, respectively (compare the
right side of figure 5). Since the number of leaves
Gu and Gv is deg+(v) − 1 and deg−(u) − 1 re-
spectively, by the end of this process every Gu and
Gv from Γ3 will have undergone QR.

The LF resulting from these 3m−n applications
of QR is the ∆ we wanted. An easy check shows
that it has type t.

Now for the harder direction, which comes down
to showing that the procedure in the previous proof
is the only way to make Γ well typed.

Theorem 4.2. Suppose that Γ →∗
QR ∆ for some ∆

of type t. Then G has a Hamiltonian cycle.

Proof. By lemma 2.1, we can assume that ∆ is
normalized. We now make a series of claims about
∆. Below, I refer to a leaf that occurs in Γ as a
“Γ-leaf.”

(i) Every trace in ∆ is of order one and therefore
of atomic type. The claim follows from lemma
2.2 and the fact that all of Γ’s leaves have order
at most three. A consequence is that nothing in
the derivation Γ →∗

QR ∆, undergoes QR twice,

a
2−→ 1 → t G4

G3

a
9−→ 1 E3

1

E4
2

E2
3

E4
3

E1
4

V1

V2

V3

V4

b

c

b

c

b

c

b

c

d

b

e

Figure 6: The LF REPAIR-instance for the digraph in figure 4.

since this would create a trace of order one next
to an abstraction, contradicting the fact that ∆ is
normalized.

(ii) Every internal node of ∆ has a type of order
at most two. To prove the claim, suppose it were
false and consider a maximally deep internal node
of order greater than two. By (i), all abstractions
are over variables of order one, so the node is not
an abstraction (otherwise there would be a deeper
internal node of the same order). It therefore has
the form Θ •Λ, where Θ has type αβ, Λ has type α,
and ord(β) > 2. Since ord(τ(Θ)) = ord(αβ) >
2, Θ cannot be an internal node, so it must be a leaf.
But each leaf of ∆ is either a trace of order one
or a Γ-leaf, and no Γ-leaf has the form αβ where
ord(β) > 2. So no such internal node can exist.

(iii) ∆ contains no “double abstractions,” i.e., it
is impossible to write ∆ = Θ[λx (λyΛ)]. Suppose
otherwise, and consider a “double abstraction” of
minimal depth, so that we can write ∆ as Θ[Π •

λxα (λyβ Λ)]. Because ∆ is normalized, Π must
have a type of the form (αβγ)δ. This means that
Π’s type has order at least three, and so by (ii)
Π must be a leaf. But no leaf of ∆ has the form
(αβγ)δ, a contradiction.

(iv) If an abstraction λxαΠ occurs in ∆, then
∆ = Θ[l • λxαΠ] for some context Θ and leaf
l of type Ev

u, Vv, Gv, or Gv. This follows from
(i), (ii), (iii), and the fact that ∆ is normalized. A
consequence is that in a derivation Γ →∗

QR ∆, the
only elements that undergo QR are leaves of type
Ev
u, Vv, Gv, or Gv.
(v) Every trace in ∆ has type a. If xα is a trace

in ∆, then it must be bound by some abstraction, so
by (iv) we can write ∆ as Θ[l • λxαΠ[xα]], where
l is a Γ-leaf. Since ∆ is normalized, l = (αβ)γ for
some types β, γ. Inspecting the leaves of Γ shows
that α can only be a.

(vi) Call the sister of the mother of a node in ∆
its aunt. Then the aunt of each leaf Ev

u, Vv, Gv, and

Gv in ∆ is a Γ-leaf of type b, c, d or e, respectively.
Consider, for example, a leaf Ev

u occurring in ∆
with sister Θ and aunt Π, as shown below:

· · ·

Θ Ev
u

Π

Θ would need order at least 4 to take

Ev
u := (a → u) → b → v

as an argument, but no node in ∆ has order higher
than 3. So Θ must have type a → u and Θ • Ev

u

must have type b → v. For Π to take b → v as an
argument, it would need to have order at least 3.
The only such elements of ∆ are the Γ-leaves, but
no Γ-leaf has a type of the form (b → v) → γ. So
Π must have type b. Since all the traces in ∆ have
type a, the only nodes of type b in ∆ are the m
Γ-leaves coming from Γ2 and Γ4, and therefore Π
is a Γ-leaf of type b, as we wanted to show. Similar
arguments apply to the leaves of type Vv, Gv, and
Gv. Since none of the leaves Ev

u, Vv, Gv, and
Gv in Γ has an aunt of type b, a consequence of
(vi) is that they must all have undergone QR in the
derivation Γ →∗

QR ∆.
The upshot of all these observations is that in

the derivation Γ →∗
QR ∆, every leaf of type Eu

v , Vv,
Gv, and Gv undergoes QR exactly once (by (i) and
(vi)), leaving a trace of type a (by (v)), and nothing
else undergoes QR (by (iv)).

We can now extract a Hamiltonian cycle from ∆.
Order the leaves Ev

u and Vv in ∆ that QRed into
Γ2 by decreasing depth:

Ev1
u1
,Vw1 ,E

v2
u2
,Vw2 , . . . ,E

vn
un
,Vwn .

In order for ∆ to be well-typed, it must be the case
that

u1 = vn = wn = 1

and vi = wi = ui+1 for 1 ≤ i < n. So we can
rewrite the sequence above as

Eu2
u1
,Vu2 ,E

u3
u2
,Vu3 , . . . ,E

u1
un
,Vu1 .

Since Vu1 , . . . ,Vun are pairwise distinct, so are
u1, . . . , un, and

(u1, u2), (u2, u3), . . . , (un, u1),

is therefore a Hamiltonian cycle in G.

Putting theorems 3.4, 4.1, and 4.2 proves the
main theorem of this paper:

Theorem 4.3. LF REPAIR is NP-complete.

Section 3 mentioned that LF REPAIR has the same
time complexity as QRT-provability of abstraction-
free sequents. So a corollary of the above is:

Corollary 4.1. Provability of abstraction-free se-
quences in QRT is NP-hard.

5 Conclusion

The main result of this paper is that finding well-
typed logical forms using quantifier raising is NP-
complete, and therefore belongs to a well-known
class of intractable problems. Where does the in-
tractability come from? The reduction in section 4
provides some insight. Notice that it:

(i) only used traces of a single atomic type,
(ii) only used types of order ≤ 3, which is the

minimum needed for nontrivial applications
of QR,

(iii) did not need parasitic scope (Barker, 2007),
(iv) did not need any elements to undergo QR mul-

tiple times.
As a consequence, even if one constrained QR by
restricting the type or order of traces, or banning
parasitic scope, or disallowing elements from un-
dergoing QR multiple times, or imposing any com-
bination of these constraints simultaneously, the
reduction in the previous section would still be
valid and the problem of finding a well-typed LF
would remain NP-complete.

The reduction does help itself to a large inventory
of atomic types, but this isn’t essential. Given a
single atomic type p, it’s possible to encode all of
the types in A in “unary”, representing a as p, b as
p → p, c as p → p → p, etc. This will preserve
the reduction. (This encoding comes with a small
cost: it increases the order of the types used in the
reduction by one).

So as far as worst-case time complexity is con-
cerned, none of the constraints above are conse-
quential. It seems like the true source of complex-
ity, the true reason why finding LFs with QR is
difficult, is simply the enormous number of deriva-
tional possibilities that arise when (i) large num-
bers of interacting scope-takers accumulate and (ii)
there are few or no syntactic constraints on what
QR can do.

A natural next question is whether a modifica-
tion of the reduction in this paper can prove NP-
completeness results for other scope-taking for-

malisms. The type-logical grammar NLλ, for ex-
ample, is a close relative of the grammar QRT from
section 3, and should have a similar time complex-
ity (Barker, 2019; Moot, 2020). Another good can-
didate are continuized CCGs (Barker and Shan,
2014; White et al., 2017).

Acknowledgments

I’m thankful to Dylan Bumford, Tim Hunter, and
three anonymous reviewers for their advice.

References
Sanjeev Arora and Boaz Barak. 2009. Computational

Complexity: A Modern Approach. Cambridge Uni-
versity Press, Cambridge, UK.

Chris Barker. 2007. Parasitic Scope. Linguistics and
Philosophy, 30:407–444.

Chris Barker. 2019. NLλ as the Logic of Scope and
Movement. Journal of Logic, Language and Infor-
mation, 28:217–237.

Chris Barker. 2020. The Logic of Quantifier Raising.
Semantics and Pragmatics, 30:1–40.

Chris Barker and Chung-chieh Shan. 2014. Continu-
ations and Natural Language. Oxford University
Press.

G. Edward Barton, Jr., Robert C. Berwick, and
Eric Sven Ristad. 1987. Computational Complex-
ity and Natural Language. MIT Press, Cambridge,
Massachusetts.

Rajesh Bhatt and Veneeta Dayal. 2007. Rightward
Scrambling as Rightward Remnant Movement. Lin-
guistic Inquiry, 38(2):287–301.

Danny Fox. 2000. Economy and Semantic Interpreta-
tion. Linguistic Inquiry Monographs 35. MIT Press,
Cambridge, MA.

Michael R. Garey and David S. Johnson. 1979. Comput-
ers and Intractability: A Guide to the Theory of NP
Completeness. W. H. Freeman and Company, New
York.

Irene Heim. 1997. Predicates or Formulas? Evidence
from Ellipsis. In Proceedings of SALT 7, pages 197–
221.

Irene Heim and Angelika Kratzer. 1998. Semantics
in Generative Grammar. Blackwell Publishers Ltd,
Oxford, UK.

C.-T. James Huang. 1993. Reconstruction and the Struc-
ture of VP: Some Theoretical Consequences. Lin-
guistic Inquiry, 24(1):103–138.

Thomas Krantz and Virgile Mobile. 2001. Encod-
ing Hamiltonian Circuits into Multiplicative Linear
Logic. Theoretical Computer Science, 266:987–996.

Robert May. 1977. The Grammar of Quantification.
PhD thesis, Massachusetts Institute of Technology.

Richard Moot. 2020. Proof-theoretic Aspects of NLλ.
Preprint, arXiv:2010.12223.

Christos H. Papadimitriou. 1994. Computational Com-
plexity. Addison-Wesley, Reading, MA.

Ethan Poole. 2024. (Im)possible Traces. Linguistic
Inquiry, 55(2):287–326.

Ian Pratt-Hartmann. 2010. Computational Complexity
in Natural Language. In The Handbook of Computa-
tional Linguistics and Natural Language Processing,
pages 43–73. Wiley-Blackwell.

Michael White, Simon Charlow, Jordan Needle, and
Dylan Bumford. 2017. Parsing with Dynamic Con-
tinuized CCG. In Proceedings of the 13th Interna-
tional Workshop on Tree Adjoining Grammars and
Related Formalisms, pages 71–83. Association for
Computational Linguistics.

https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1007/s10988-007-9021-y
https://doi.org/10.1007/s10849-019-09288-1
https://doi.org/10.1007/s10849-019-09288-1
https://doi.org/10.3765/sp.13.20
https://doi.org/10.1093/acprof:oso/9780199575015.001.0001
https://doi.org/10.1093/acprof:oso/9780199575015.001.0001
https://doi.org/10.1162/ling.2007.38.2.287
https://doi.org/10.1162/ling.2007.38.2.287
https://doi.org/10.3765/salt.v7i0.2793
https://doi.org/10.3765/salt.v7i0.2793
https://doi.org/10.1016/S0304-3975(00)00381-9
https://doi.org/10.1016/S0304-3975(00)00381-9
https://doi.org/10.1016/S0304-3975(00)00381-9
https://arxiv.org/abs/2010.12223
https://doi.org/10.1162/ling_a_00467
https://doi.org/10.1002/9781444324044
https://doi.org/10.1002/9781444324044
https://aclanthology.org/W17-6208/
https://aclanthology.org/W17-6208/

	Introduction
	Preliminaries and Notation
	Types, Logical Forms, Contexts
	Quantifier Raising
	Normalization
	Directed Graphs and Hamiltonian Cycles

	LF REPAIR is in NP
	LF REPAIR is NP-Hard
	Encoding Hamiltonian Cycles in LFs
	Correctness

	Conclusion

