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Abstract
Focusing particularly on mass nouns, we de-
velop an ontology for natural language seman-
tics based on measure theory. The new frame-
work makes for rigorous discussion on changes
of states and on events of continuous nature.

1 Introduction

In languages like English, nouns come in two kinds:
count and mass. Count nouns, such as child and
statue, exhibit a singular/plural morphological dis-
tinction, and typically denote things or individuated
objects. In contrast, mass nouns, such as milk and
clay, have no morphological number distinction,
and typically denote stuffs or materials.

Two properties standardly associated with mass
nouns are cumulativity (Quine, 1960) and dis-
tributivity (Cheng, 1973). Cumulativity refers
to the fact that if x is milk and y is milk, then
the sum of x and y is also milk. Distributivity
refers to the fact that any part of milk is also milk.
Theoretical analyses of mass nouns that take these
properties into account are naturally led to assume
some kind of Boolean structure that need not be
atomic (Bunt, 1979; Link, 1983; Roeper, 1983;
Lønning, 1987). Let’s follow suit and assume that
mass entities forms a nonatomic Boolean algebra
⟨D,∨,∧,¬, 0D, 1D⟩, where ∨ is join (or supre-
mum), ∧ is meet (or infimum), ¬ is complement,
and 0D and 1D are the bottom and top elements. It
is reasonable to take this algebra to be σ-complete,
meaning that every countable subset has a join and
a meet. The part-of relation ≤ on D is the partial
order defined by

x ≤ y iff x ∨ y = y (iff x ∧ y = x).

For more on Boolean algebras, the reader is re-
ferred to Givant and Halmos (2009).

Assuming that the denotation of milk is identical
to that of the predicate is milk, it seems appropriate
to have

(1) JmilkK = {x ∈ D | x ≤ m },

where m stands for the sum of all milk in the world.
To use a technical term, JmilkK is an ideal.

Definition. A subset I of a Boolean algebra B is
an ideal iff it satisfies the following conditions:

(C1) 0B ∈ I .

(C2) If x ∈ I and y ∈ I , then x ∨ y ∈ I .

(C3) If x ∈ I and y ≤ x, then y ∈ I .

One can see that (C2) and (C3) correspond to cumu-
lativity and distributivity, respectively. (C1) is to en-
sure that I is nonempty, but in the present context,
it implies that 0D ∈ JmilkK. This might appear
nonsensical, but I assume it to be a mere technical-
ity with no real semantic consequences. An ideal I
is said to be σ-complete if (C2) is strengthened to
the following:

(C2′) If S ⊆ I is countable, then
∨
S ∈ I .

The elements that are less than or equal to some
element a ∈ B form an ideal, known as the princi-
pal ideal generated by a, and written ↓a. With this
notation, (1) can be expressed as JmilkK = ↓m. It
is easy to see that a principal ideal in a σ-complete
algebra is necessarily a σ-complete ideal.

This kind of classic model, which is static in
nature, might be good enough, if all that there is is
what exists at this moment in actuality. However,
the existing entities might not exist in the past or
future, and can be hypothesized to be absent in
a state of affairs—or possible world—other than
actuality. Conversely, something that does not exist
now may exist at a different time or in a different
world. As language enables such intensional talk,
a simple analysis like (1) is bound to be deficient.

This paper develops a theory to repair this inad-
equacy. Section 2 explains our ontological stand-
point that equates existence with positive measure-



ment. Section 3 defines the life of an entity, the
time period throughout which the entity exists. This
leads us to review our ontological assumptions
about times, which shall now be understood as
(equivalence classes of) sets of time points of posi-
tive measure. Section 4 looks into the denotation
of a mass noun in our new ontological setting. Sec-
tion 5 examines sentences of continuous produc-
tion or consumption and concludes that they call
for mathematical integration, which shall be car-
ried out measure-theoretically. Finally, Section 6
notes connections between telicity and integration.

2 To Be Is To Measure Positively

Quantities of entities denoted by count nouns are
numerically expressed with cardinal numbers, as
in 9 children. In contrast, entities denoted by
mass nouns are generally not countable, and their
quantities are numerically expressed with mea-
suring expressions such as 9.8 liters of. To ana-
lyze them under the assumption that mass enti-
ties form a σ-complete Boolean algebra, functions
known as measures come in handy (Halmos, 1950;
Cartwright, 1975; Krifka, 1989; Higginbotham,
1994).

Definition. A measure µ on a σ-complete
Boolean algebra B is a function from B into
R ∪ {∞} that satisfies the following three con-
ditions:

• Nonnegativity: µ(x) ≥ 0 for all x.

• µ(0B) = 0.

• Countable additivity: if {xn}n∈N is a se-
quence of pairwise disjoint elements (i.e. i ̸=
j implies xi∧xj = 0B), then µ

(∨
n∈N xn

)
=∑

n∈N µ(xn).

µ is called a positive measure if it further satisfies

• Positivity: µ(x) > 0 for all x > 0B .

A Boolean algebra equipped with a positive mea-
sure is called a measure algebra.

Lemma 1. If x ≤ y, then µ(x) ≤ µ(y).

Proof. If x ≤ y, then x ∧ y = x, so y = 1D ∧
y = (x ∨ ¬x) ∧ y = (x ∧ y) ∨ (¬x ∧ y) = x ∨
(¬x ∧ y), so µ(y) = µ(x ∨ (¬x ∧ y)) = µ(x) +
µ(¬x ∧ y) ≥ µ(x) by countable additivity and
nonnegativity.

Using measures, we may expect sentences as-
serting the existence of mass entities as in (2) to
translate as conditions that those entities have a
positive measurement as in (3):

(2) a. There is some milk in the tank.
b. There is 9.8 liters of milk in the tank.

(3) a. µ(
∨

Jmilk in the tankK) > 0.
b. µliter(

∨
Jmilk in the tankK) ≥ 9.8.1

However, such translations give us a conundrum.
Unless µ is a positive measure, it is possible that
a =

∨
(Jmilk in the tankK) ̸= 0D and yet µ(a) =

0. If this happens, then (3-a) predicts (2-a) to be
false even though the entity a is milk in the tank.

To avoid such puzzling situations, one might
stipulate that µ be a positive measure. This is not
what we want, however. In the previous section, we
have noted that things change, and that something
that exists now might be no more at other times
or in other worlds, and vice versa. I propose that
we capture this intuition by employing a family
{µw, p}w∈W, p∈T of measures, where W is the set
of possible worlds and T the set of time points. Our
slogan here is “existence as positive measurement,”
which means something like the following:

(4) An entity x ∈ D exists at p in w iff
µw, p(x) > 0.

This will allow us to describe how entities come
into or go out of existence. For instance, if x was
born at noon, then µw, p(x) = 0 if p is a time point
before the noon, and µw, p(x) > 0 if p is a time
point after the noon. On this view, entities funda-
mentally never come into or go out of existence.
They are always there as elements of D and may or
may not have a positive measurement, depending
on the world and the time. On this approach, it is
essential that µw, p be not a positive measure.

3 The Life of an Entity

Let’s discuss the life of a mass entity x, i.e., the set
of time points at which x exists.2 In what follows,

1We have “≥” rather than “=” here because (2-b) is con-
sistent with there being more than 9.8 liters of milk in the tank.
The impression that (2-b) says that there is exactly 9.8 liters
of milk in the tank can be attributed to scalar implicature.

2By “a mass entity x,” I mean an entity that happens to
be predicated of by a mass noun. I am not sure whether the
count/mass distinction is inherent in the entities in the model.
It seems possible for an entity to be predicated of by a count
noun and by a mass noun at the same time, as in This is
furniture—a chair to be precise.



we will not vary the world parameter and focus on
a single, fixed world. Accordingly, we will drop the
world parameter and simply write µp. Under the
slogan “existence as positive measurement,” that
x exists at p will mean that x measures positively
at p. However, if some nonzero part of x (i.e., part
of x that is not 0D) is of measure zero at p, we do
not want to think that x exists at p. In order to be
able to assert that x exists at p, every bit of x must
measure positively. We therefore put forward the
following definition.

Definition. The life of x with respect to a family
{µp}p∈T of measures, written ♡µ(x), is

♡µ(x) := { p ∈ T |
∀y(0D < y ≤ x → µp(y) > 0) }.

Lemma 2. (i) ♡µ(
∨
X) =

⋂
x∈X

♡µ(x) for all

countable X ⊆ D.

(ii) If x ≤ y, then ♡µ(y) ⊆ ♡µ(x) for all x, y ∈
D.

Proof. (i) For every x ∈ X , since x ≤
∨

X , we
have

p ∈ ♡µ(
∨
X)

⇐⇒ ∀y(0D < y ≤
∨
X → µp(y) > 0)

=⇒ ∀y(0D < y ≤ x → µp(y) > 0)

⇐⇒ p ∈ ♡µ(x),

so ♡µ(
∨
X) ⊆ ♡µ(x). Hence ♡µ(

∨
X) ⊆⋂

x∈X ♡µ(x).
Conversely, suppose that p ∈

⋂
x∈X ♡µ(x).

Suppose that 0D < y ≤
∨
X . Then

∨
x∈X(y ∧

x) = y ∧ (
∨
X) = y > 0D, so there is some

x0 ∈ X with y ∧ x0 ̸= 0D. Since p ∈ ♡µ(x0)
and y ∧ x0 ≤ x0, we have µp(y ∧ x0) > 0 by the
definition of ♡µ. Since µp(y) ≥ µp(y ∧ x0) by
Lemma 1, it follows that µp(y) > 0. This shows
that p ∈ ♡µ(

∨
X).

(ii) If x ≤ y, then x∨ y = y, so by (i), ♡µ(y) =
♡µ(x ∨ y) = ♡µ(x) ∩ ♡µ(y) ⊆ ♡µ(x).

It might seem that the assertion that an entity x
exists sometime will be translated as ♡µ(x) ̸= ∅.
However, what if ♡µ(x) consists of a single time
point p0, i.e., ♡µ(x) = {p0}? This means that x
had some physical presence at p0, but none either
before or after. Do we still want to say that x ex-
isted? Even if such a situation obtained in reality,
there would be no way of ascertaining it, and I be-
lieve most of us intuitively think that things do not

work that way. Then, we might as well ignore the
possibility of such literally instantaneous existence.
For something to exist, it must be there for some
positive length of time. It is time we extended the
slogan “existence as positive measurement” to the
realm of times.

As in physics, let’s identify T with the set R
of real numbers. Then, the Lebesgue measure
µL can be used to measure the length of a subset
of T . For instance, if an interval X ⊆ T begins
at p and ends at q, then µL(X) = q − p (regard-
less of whether X is open, closed, or half-open).
Let L (T ) be the set of Lebesgue-measurable sub-
sets of T , i.e., subsets X of T for which µL(X)
is defined. It is known that ⟨L (T ),∪,∩, c,∅, T ⟩
is a σ-complete Boolean algebra, and µL gives a
measure on it. Since µL({p0}) = 0, through the
lens of the Lebesgue measure, {p0} is equivalent
to ∅. In other words, being there only at p0 will
be identified with being there at no time at all. The
mathematical way to achieve this perspective is to
go to the quotient algebra of L (T ) modulo the
set I of sets of measure zero, i.e.,

I = {X ∈ L (T ) | µL(X) = 0 }.

I is a σ-complete ideal in L (T ), and one can de-
fine an equivalence relation ∼ on L (T ) by

X ∼ Y iff (X ∩ Y c) ∪ (Y ∩Xc) ∈ I.

Let [X] = {Y ∈ L (T ) | X ∼ Y } denote the
equivalence class of X . Then

T := { [X] | X ∈ L (T ) }

gives rise to the quotient algebra
⟨T ,⊔,⊓, c, 0T , 1T ⟩. This is a σ-complete
Boolean algebra. For X,Y ∈ L (T ), we have
[X] ⊔ [Y ] = [X ∪ Y ], [X] ⊓ [Y ] = [X ∩ Y ],
[X]c = [Xc], 0T = [∅] and 1T = [T ]. For
s, t ∈ T , we define s ⊑ t iff s ⊔ t = t. If X ⊆ Y ,
then [X] ⊑ [Y ]. Whenever X,Y ∈ t ∈ T , we
have µL(X) = µL(Y ), so we can let µL(t) be
this unique value that µL assumes at any element
of t. This way, µL can be extended to T , and it
is known that µL gives a positive measure on T .
Thus T is a measure algebra.

We can now forsake (4) and put forward the
following definition:

Definition. For all x ∈ D:

• x exists at t ∈ T with respect to {µp}p∈T iff
[♡µ(x)] ⊒ t ̸= 0T .



• x never exists with respect to {µp}p∈T iff
[♡µ(x)] = 0T .

According to this definition, if x exists at t ̸= 0T ,
then µL([♡µ(x)]) ≥ µL(t) > 0 by Lemma 1 and
the positivity of µL on T , so x’s life has some
positive length. On the other hand, if ♡µ(x) =
{p0}, then [♡µ(x)] = 0T , so x never exists.3

Some immediate worries present themselves. In
this new setting, a “time” is a member of T , i.e., an
equivalence class of Lebesgue-measurable subsets
of T .4 This means that if X ⊆ T is not Lebesgue-
measurable, we cannot even discuss whether an
entity exists at X . Also, if ♡µ(x) is not Lebesgue-
measurable, we cannot discuss whether x exists at
any time. Indeed, using the axiom of choice, one
can construct subsets of R that are not Lebesgue-
measurable (Vitali, 1905). On the other hand,
Zermelo–Fraenkel set theory without the axiom
of choice has a model where every subset of R is
Lebesgue-measurable (Solovay, 1970). What I take
this to imply is that we probably need not worry
about the possible existence of sets that are not
Lebesgue-measurable. Even if they exist, since we
obviously cannot mentally execute an infinite-step
process involved in the use of the axiom of choice,
I believe it is safe to assume that such sets do not
figure in our mental model for natural language
semantics.

Another worry concerns equating subsets of T
whose symmetric differences are of measure zero.
For instance, suppose that ♡µ(x) = (0, 1)∪(1, 2).5
Since [♡µ(x)] = [(0, 2)], it follows that x exists
at [(0, 2)] by our definition. Such a statement,
however, would naturally lead one to expect every
nonzero part of x to measure positively through-
out (0, 2). Nevertheless, since 1 /∈ ♡µ(x), there is
some nonzero part y of x such that µ1(y) = 0. This
is quite counterintuitive. How can something only
momentarily vanish and then come back? Makoto
Kanazawa (personal communication) suggests that
this should not be a problem from a measure theo-
retic point of view, since the probability of picking
such a point is zero. More precisely, if X ⊆ T and
X ∼ ♡µ(x), then µL(X∩♡µ(x)

c) = 0, so assum-
3If t = 0T , then [♡µ(x)] ⊒ t trivially holds, so this case

has been excluded from the definition in order to avoid such a
clashing statement as “x exists at t and x never exists.”

4In natural language semantics, “times” often mean time
intervals. Aside from dealing with equivalence classes, our
“times” are different from time intervals in that they can be
discontinuous.

5(a, b) denotes an open interval. Thus (0, 1) = { p ∈ T |
0 < p < 1 }.

ing that µL(X) = µL(♡µ(x)) > 0, the probability
of picking a point p from X that is not in ♡µ(x) is

µL(X ∩ ♡µ(x)
c)

µL(X)
= 0.

In measure theory, a property is said to hold almost
everywhere if it does except on a set of measure
zero. Analogously, in probability theory, an event
is said to happen almost surely if its probability is
1. Let’s shift to this way of thinking and speak as
follows:

(5) p ∈ X ∼ ♡µ(x) almost surely entails that
µp(x) > 0.

Thus, [♡µ(x)] = [(0, 2)] almost surely entails that
µ1(x) > 0.

Lastly, note that since ♡µ(0D) = T , it follows
that 0D exists at any t ̸= 0T . I take this to be a
mere technicality of no real semantic import.

4 Mass Noun Denotations

Let M be a mass noun. To describe situations where
an entity becomes M or ceases to be M, the mean-
ing of M needs to be sensitive to the time. So let’s
take M to denote a binary relation between times
and entities. Now that our slogan “existence as
positive measurement” motivates the view that the
times that matter in human minds are members of
T , this means that M denotes a relation between the
two Boolean algebras T and D, i.e., JMK ⊆ T ×D.
Let JMK (t) denote the set of entities that are M at
a given time t:

JMK (t) := {x ∈ D | ⟨t, x⟩ ∈ JMK }.

As mentioned in Section 1, JMK (t) ought to be a
principal ideal. This means that there is a family
{mt}t∈T of elements of D such that

JMK (t) = ↓mt.

Now, let’s consider the set of times at which a
given entity x is M, for which we write:

JMK−1(x) := { t ∈ T | ⟨t, x⟩ ∈ JMK }.

Intuitively, if x is M both at s and at t, then x ought
to be M at s ⊔ t. Also, if x is M at t and s ⊑ t,
then x must be M at s as well. This means that
JMK−1(x) should be an ideal in T . Regarding this
matter, the following holds.



Proposition 3. Suppose that each JMK (t) is a prin-
cipal ideal ↓mt. Then, the following are equiva-
lent:

(a) JMK−1(x) is a σ-complete ideal in T for all
x ∈ D.

(b)
∧
t∈C

mt = m⊔
C for all countable C ⊆ T .

Proof of this proposition follows shortly. Before
that, note that what Condition (b) says is twofold.
First, if x is M at s and y is M at t, then x ∧ y is
M at s ⊔ t. This is expected of M’s denotation;
since x∧ y is part both of x and of y, it ought to be
M both at s and at t, and hence throughout s ⊔ t.
Second, if something is M at s ⊔ t, then it must be
M both at s and at t. Again, this is only expected.

Lemma 4. Suppose that Condition (b) of Proposi-
tion 3 holds. Then, the following hold:

(i) m0T = 1D.

(ii) If s ⊑ t, then mt ≤ ms.

Proof. (i) m0T = m⊔
∅ =

∧
t∈∅mt =

∧
∅ =

1D.
(ii) If s ⊑ t, then t = s ⊔ t, so mt = ms⊔t =

ms ∧mt ≤ ms.

Proof of Proposition 3. (a) ⇒ (b). Let C ⊆ T be
countable.

Suppose that x ≤ mt for all t ∈ C. Then for all
t ∈ C, we have x ∈ ↓mt = JMK (t), so ⟨t, x⟩ ∈
JMK and hence t ∈ JMK−1(x). Since JMK−1(x) is
a σ-complete ideal by assumption, it follows that⊔
C ∈ JMK−1(x), so x ∈ JMK (

⊔
C) = ↓m⊔

C
and hence x ≤ m⊔

C . Taking
∧

t∈C mt for x in
particular, we obtain

∧
t∈C mt ≤ m⊔

C .
Next, suppose that x ≤ m⊔

C . Then x ∈
↓m⊔

C = JMK (
⊔
C), so

⊔
C ∈ JMK−1(x). For

every t ∈ C, we have t ≤
⊔
C, and since JMK−1(x)

is a σ-complete ideal by assumption, it follows that
t ∈ JMK−1(x), and hence x ∈ JMK (t) = ↓mt,
so x ≤ mt. It follows that x ≤

∧
t∈C mt. Tak-

ing m⊔
C for x in particular, we obtain m⊔

C ≤∧
t∈C mt.
This completes the proof that

∧
t∈C mt = m⊔

C .
(b) ⇒ (a). We verity that JMK−1(x) satisfies the

three conditions for being a σ-complete ideal.
(C1) x ≤ 1D = m0T by Lemma 4(i), so x ∈

↓m0T = JMK (0T ). Thus, ⟨0T , x⟩ ∈ JMK and
0T ∈ JMK−1(x).

(C2′) Suppose that C ⊆ T is countable, and
t ∈ JMK−1(x) for all t ∈ C. Then for all t ∈ C, we

have x ∈ JMK (t) = ↓mt and hence x ≤ mt, so
x ≤

∧
t∈C mt = m⊔

C by the assumed condition.
Thus, x ∈ ↓m⊔

C = JMK (
⊔
C) and hence

⊔
C ∈

JMK−1(x).
(C3) Suppose that t ∈ JMK−1(x) and s ⊑ t.

Since x ∈ JMK (t) = ↓mt, we have x ≤ mt ≤ ms

by Lemma 4(ii), so x ∈ ↓ms = JMK (s). Hence
s ∈ JMK−1(x).

I think it is reasonable to assume that JMK−1(x)
is indeed a σ-complete ideal in T , and a principal
ideal at that, just as JMK (t) is a principal ideal in
D. This means that there is a family {ℓx}x∈D of
elements of T such that

JMK−1(x) = ↓ℓx.6

As times and entities play symmetric roles in M’s
denotation, the following are immediate as parallels
of Proposition 3 and Lemma 4.

Proposition 5. Suppose that each JMK−1(x) is a
principal ideal ↓ℓt. Then, the following are equiva-
lent:

(a) JMK (t) is a σ-complete ideal in D for all
t ∈ T .

(b)
d

x∈C
ℓx = ℓ∨C for all countable C ⊆ D.

Lemma 6. Suppose that Condition (b) of Proposi-
tion 5 holds. Then, the following hold:

(i) ℓ0D = 1T .

(ii) If x ≤ y, then ℓy ⊑ ℓx.

What is the meaning of Condition (b) of Proposi-
tion 5? First, it says that if x is M at s and y is M
at t, then x ∨ y is M at s ⊓ t. Second, it says that if
x ∨ y is M at some time, then both x and y are M
at that time.

Let M = {mt | t ∈ T } and L = { ℓx | x ∈
D }. Through domain restriction, ℓ can be regarded
as a function from M into L. Likewise, m can be
viewed as a function from L into M. Then the pair
of ℓ and m forms what is known as a Galois con-
nection between ⟨M,≤⟩ and ⟨L,⊑⟩, satisfying
the condition in (i) below (vide Mac Lane, 1998).

Lemma 7. Suppose that x ∈ D and t ∈ T .

(i) t ⊑ ℓx if and only if x ≤ mt.

(ii) x ≤ mℓx and t ⊑ ℓmt .
6Speaking intuitively, ℓx is x’s lifespan as M.



(iii) mℓmt
= mt and ℓmℓx

= ℓx.

Proof. (i) t ⊑ ℓx iff t ∈ ↓ℓx iff t ∈ JMK−1(x)
iff ⟨t, x⟩ ∈ JMK iff x ∈ JMK (t) iff x ∈ ↓mt iff
x ≤ mt.

(ii) Since ℓx ∈ ↓ℓx = JMK−1(x), we have
⟨ℓx, x⟩ ∈ JMK, so x ∈ JMK (ℓx) = ↓mℓx and
hence x ≤ mℓx . Dually for t ⊑ ℓmt .

(iii) By (ii), mt ≤ mℓmt
. Also, since t ⊑ ℓmt by

(ii), we have mℓmt
≤ mt by Lemma 4(ii). Hence

mℓmt
= mt. Dually for ℓmℓx

= ℓx.

Our denotation of a mass noun M is a binary
relation between equivalence classes of Lebesgue-
measurable sets of time points and entities. How-
ever, we should also like to be able to talk about
whether or not an entity is M at a specific time
point. I say that a natural idea would be that an
entity is M at a time point p if and only if it is
M at some open set (in topological sense) of time
points that contains p. Let’s define the derivative
denotation of M for a time point p ∈ T by

Definition. JMK (p) :=
⋃

G open, p∈G
JMK ([G]).

Note that every open set G is Lebesgue-
measurable, so [G] makes sense. Here is a reason
for considering only open sets. Imagine that for
an entity x, we have ℓx = [(0, 1)] = [[0, 1]].7

This means that x begins to be M at time point
0 and ceases to be M at time point 1. Now,
do we want to say that x is M at time point 0?
How about at time point 1? Some might say
yes, but it seems fair to say that it is uncertain
whether x is M at those points. If we allowed
G to be the non-open set [0, 1] in the definition
of JMK (0), we would be forced to say that x is
M at 0. By dealing exclusively with open sets,
we can avoid such an undesirable conclusion.
On our definition, in contrast, if x ∈ JMK (p),
then there is an open set G such that p ∈ G and
x ∈ JMK([G]). As G is open, there is an open
neighborhood of p in G, or more specifically, an
open interval B such that p ∈ B ⊆ G. Since
[G] ∈ JMK−1(x) and JMK−1(x) is an ideal, it
follows that [B] ∈ JMK−1(x). Thus, we conclude
that x is M at some time interval that surrounds
p instead of having p on its edge. Assuming that
JMK (t) and JMK−1(x) are principal ideals, our
definition leads to the following nice consequence.

7[0, 1] denotes the closed interval { p ∈ T | 0 ≤ p ≤ 1 },
and [[0, 1]] its equivalence class.

Proposition 8. JMK(p) is an ideal in D.

Proof. We check the three conditions for being an
ideal.

(C1) Since 0D ≤ m1T , we have 0D ∈ ↓m1T =
JMK (1T ) = JMK ([T ]). Since the whole space T
is open and p ∈ T , this shows that 0D ∈ JMK (p).

(C2) Suppose that x, y ∈ JMK(p). Then, there
exist an open set G1 such that p ∈ G1 and x ∈
JMK ([G1]), and an open set G2 such that p ∈ G2

and y ∈ JMK ([G2]). Then [G1] ∈ JMK−1(x) =
↓ℓx, so [G1] ⊑ ℓx. Similarly, [G2] ⊑ ℓy. Then
[G1∩G2] = [G1]⊓[G2] ⊑ ℓx⊓ℓy = ℓx∨y by Propo-
sition 5(b). So [G1∩G2] ∈ ↓ℓx∨y = JMK−1(x∨y)
and hence x ∨ y ∈ JMK ([G1 ∩G2]). As G1 ∩G2

is an open set and p ∈ G1 ∩ G2, this shows that
x ∨ y ∈ JMK (p).

(C3) Suppose that x ∈ JMK(p) and y ≤ x. Then,
there is an open set G such that p ∈ G and x ∈
JMK([G]) = ↓m[G]. Then y ≤ x ≤ m[G], so
y ∈ ↓m[G] = JMK([G]). Hence y ∈ JMK(p).

Note that JMK(p) is not necessarily a σ-complete
ideal. This is due to the fact that countable inter-
section of open sets need not be an open set. For
instance, Gn =

(
− 1

n ,
1
n

)
is open for every positive

integer n, but
⋂

n≥1Gn = {0} is not.
We have derived JMK(p)’s from JMK([G])’s, but

we can also get back to JMK([G])’s from JMK(p)’s.
Proposition 9. Let G ⊆ T be an open set. Then
JMK ([G]) =

⋂
p∈G

JMK (p).

Proof. By the definition of JMK (p), for every p ∈
G, we have JMK ([G]) ⊆ JMK (p), so JMK ([G]) ⊆⋂

p∈G JMK (p).
For the reverse inclusion, suppose that x ∈⋂
p∈G JMK (p). For each p ∈ G, we have x ∈

JMK (p), so there is some open set Gp such that
p ∈ Gp and x ∈ JMK ([Gp]) = ↓m[Gp] and hence
x ≤ m[Gp]. Since G ⊆

⋃
p∈GGp, {Gp}p∈G is

an open cover of G. Since T = R has a count-
able base for its topology, there exists a countable
subcover {Gpn}n∈N, so G ⊆

⋃
n∈NGpn . Then

[G] ⊑
[⋃

n∈NGpn

]
, and

x ≤
∧
n∈N

m[Gpn ]
(since x ≤ m[Gpn ]

for all n)

= m⊔
n∈N[Gpn ]

(by Proposition 3(b))

= m[
⋃

n∈N Gpn ]

≤ m[G], (by Lemma 4(ii))

so x ∈ ↓m[G] = JMK ([G]). This shows that⋂
p∈G JMK (p) ⊆ JMK ([G]).



It is time we revisited mass entities’ lives. If
something is M at some time, then that thing had
better exist at that time in the sense defined in the
previous section. I would now like to propose the
following:

(6) For every mass noun M, there is a relevant
family {µp}p∈T of measures such that t ⊑
[♡µ(x)] for all t ∈ T and x ∈ D such that
⟨t, x⟩ ∈ JMK.

This does not mean that there is a unique relevant
measure for a given mass noun. For instance, milk
can be measured in terms of volume (liters of )
or in terms of mass (grams of ). (6) ensures that
even if sentences do not explicitly use expressions
like liters of, some implicit measure is involved
in modeling their meaning. In fact, the sentences
in (7) contain no specific measuring unit, and yet
demonstrate that the amount of milk is somehow
measured; otherwise, one could not state if the milk
in the tank is a lot or a little. As (8) shows, the same
point holds for nouns like love as well, for which
no appropriate word of a measuring unit seems to
exist.

(7) a. There is a lot of milk in the tank.
b. There is a little milk in the tank.

(8) a. There is a lot of love between Christa
and Ymir.

b. There is a little love between Christa
and Ymir.

Why shouldn’t we rather say the following
stronger statement instead of (6)?

(6′) For every mass noun M, there is a relevant
family {µp}p∈T of measures such that ℓx =
[♡µ(x)] for all x ∈ D.

This says that the maximum time at which x is, say,
milk coincides with x’s life, i.e., the time through-
out which x has some physical presence. However,
we do not want to stipulate that x be allowed to
exist only as milk. Imagine that x starts its life
as milk at time point 0, turns into cheese at time
point 1, and eventually gets eaten by Chris at time
point 2 to completely vanish from the world. In
this case, ℓx = [(0, 1)] and [♡µ(x)] = [(0, 2)], so
ℓx ̸= [♡µ(x)]. The following proposition shows
that (6) can be equivalently expressed in different
ways.

Proposition 10. The following are equivalent:

(i) t ⊑ [♡µ(x)] for all t ∈ T and x ∈ D such
that ⟨t, x⟩ ∈ JMK.

(ii) ℓx ⊑ [♡µ(x)] for all x ∈ D.

(iii) t ⊑ [♡µ(mt)] for all t ∈ T .

Proof. (i) ⇒ (ii). Let x ∈ D. Since ℓx ∈ ↓ℓx =
JMK−1(x), we have ⟨ℓx, x⟩ ∈ JMK. The assumed
condition (i) then implies that ℓx ⊑ [♡µ(x)].

(ii) ⇒ (iii). Let t ∈ T . By Lemma 7(ii) and the
assumed condition (ii), t ⊑ ℓmt ⊑ [♡µ(mt)].

(iii) ⇒ (i). Suppose that ⟨t, x⟩ ∈ JMK. Since t ∈
JMK−1(x) = ↓ℓx, we have t ⊑ ℓx. By the assumed
condition (iii), ℓx ⊑ [♡µ(mℓx)]. Since x ≤ mℓx by
Lemma 7(ii), ♡µ(mℓx) ⊆ ♡µ(x) by Lemma 2(ii).
Hence t ⊑ ℓx ⊑ [♡µ(mℓx)] ⊑ [♡µ(x)].

Finally, let’s get back to the sentences in (2).
They can now be analyzed as follows, where p∗

denotes the utterance time point:

(9) a. There is some x such that x ∈
Jmilk in the tankK(p∗).

b. There is some x such that x ∈
Jmilk in the tankK(p∗) and µp∗

liter(x) ≥
9.8.

Note that a number of assumptions are at work
under cover of the deceptively simple appearance
of (9-a). By the definition of the derivative deno-
tation for time points, (9-a) means that there ex-
ists an open G ⊆ T such that p∗ ∈ G and x ∈
Jmilk in the tankK([G]). By (6), there is a relevant
family {µp}p∈T of measures and [G] ⊑ [♡µ(x)].
Adopting the way of talking in (5), this almost
surely entails that µp∗(x) > 0.

5 Continuous Production/Consumption

Let’s move on to sentences describing continuous
production or consumption of mass entities like the
following:

(10) a. The cow produced 9.8 liters of milk
yesterday.

b. The calf consumed 9.8 liters of milk
yesterday.

When the subject is fixed to some particular indi-
vidual like the cow or the calf, transitive verbs may
be regarded as denoting a binary relation between
times and entities.

While not necessary for analyzing (10), it might
be illuminating to compare the denotations of these
verbs with mass noun denotations.



An important property of these verbs is what
might be called double cumulativity,8 in the sense
illustrated below:

(11) the cow produced x at s and y at t
=⇒ the cow produced x ∨ y at s ⊔ t

This property implies that the verb denotation is
cumulative separately in the entity domain and in
the temporal domain:9

(12) a. the cow produced x at t and y at t
=⇒ the cow produced x ∨ y at t

b. the cow produced x at s and x at t
=⇒ the cow produced x and s ⊔ t

However, these separate cumulative properties in
the two domains do not entail double cumulativity.
Indeed, the denotation of a mass noun is cumula-
tive in the two separate domains as detailed in the
previous section, but is not doubly cumulative:

(13) x is milk at s and y is milk at t
≠⇒ x ∨ y is milk at s ⊔ t

Also, I say that verbs V of production or con-
sumption (with a fixed singular subject) have “dou-
ble” distributivity10 in the following sense:

(14) If ⟨t, x⟩ ∈ JVK, then for all nonzero s ⊑ t,
there is some nonzero y ≤ x such that
⟨s, y⟩ ∈ JVK, and for all nonzero y ≤ x,
there is some nonzero s ⊑ t such that
⟨s, y⟩ ∈ JVK.

However, this does not imply distributivity in each
separate domain:

(15) a. the cow produced x at t and y ≤ x
≠⇒ the cow produced y at t

b. the cow produced x at t and s ⊑ t
≠⇒ the cow produced x at s

To understand this, imagine that the cow spent the
time period [(0, 1)] to produce y, a total of 5.5
liters of milk, and spent the time period t = [(0, 2)]
to produce x, a total of 9.8 liters of milk. Let
s = [(1, 2)]. Then y ≤ x and s ⊑ t, but no nonzero

8Krifka (1989) calls this property Summativity for relations
between events and objects.

9Although the kind of situation described in (10-b) is unre-
alistic, I see nothing wrong with the inference per se; so long
as one can imagine one and the same entity can be produced
twice, one sees that the inference goes through.

10This corresponds to the properties Krifka (1989) calls
Mapping to Objects and Mapping to Events.

part of y was produced at any nonzero part of s.
The assumed double distributivity then entails that
the cow did not produce y at t nor did it produce x
at s. This concludes that unlike in the case of mass
nouns, neither JVK (t) nor JVK−1(x) is an ideal. I
would like to note, however, that the weaker form
of distributivity in (16-a) should hold, as evidenced
by the valid inference in (16-b).

(16) a. the cow produced x ̸= 0D at t
=⇒ the cow produced some nonzero
proper part of x at t

b. the cow produced 9.8 liters of milk
at t
=⇒ the cow produced 5.5 liters of
milk at t

Now, let me hope that I can come back to
study lexical denotations of verbs of produc-
tion/consumption in more detail in the future, and
let me return to (10). A straightforward analysis of
(10-a) will look something like the following:

(17) There is some x such that x ∈ JmilkK(p∗),
µp∗

liter(x) ≥ 9.8, and ⟨ystd, x⟩ ∈
Jthe cow producedK,

where p∗ denotes the utterance time point and
ystd ∈ T is the equivalence class of the whole
interval of yesterday. (17) can be equivalently ex-
pressed as follows:

µp∗

liter

(∨
( JmilkK (p∗) ∩
Jthe cow producedK (ystd))

)
≥ 9.8.

Imagine, however, that the calf consumed all the
milk produced by the cow within yesterday. Then
no portion of the milk in question remains today,
so (17) will come out false. Can we perhaps fix this
problem by changing p∗ to some appropriate time
point in yesterday? No. Imagine that the calf drank
the milk directly from the breast of the dam cow
as she produced it. If the calf’s swallowing milk
is to be understood as disappearance of the milk
from the world, the milk in question that existed at
any given time point p is the milk that was in the
mouth of the calf at p, and it is quite possible that
its volume was always below 9.8 liters.11 We then
might want to split yesterday into small subinter-
vals, and sum up the amounts of milk that the cow

11Szabó (2006) discusses a similar problem involving count
nouns such as Helen had three husbands, which can be true
even if there was no past time when Helen had three husbands
simultaneously.



produced at those intervals. I argue, however, that
that appraoch is still insufficient for two reasons.

To illustrate my first point, let’s say that within
yesterday, the cow started milk production at time
point p0 and ended it at pn. Then, we need
only look at (the equivalence class of) the inter-
val [(p0, pn)]. Let’s say that we split this into n
subintervals t1 = [(p0, p1)], t2 = [(p1, p2)], . . . ,
tn = [(pn−1, pn)] and want to see whether some-
thing like the following holds:

(18)
n∑

k=1

µpk
liter

(∨
(JmilkK (pk) ∩

Jthe cow producedK (tk))
)
≥ 9.8.

Unfortunately, exactly the same problem persists
for each subinterval in principle: there is no guar-
antee that the portion of the milk produced during
tk remained wholly at pk. However, by making the
splitting finer and finer, we can expect to obtain a
more and more precise measurement of the total
milk production.

The second reason has to do with the fact that
even in a situation where an entity keeps exist-
ing, its measurement can change throughout its
life. (10-a) can be naturally used when the hearer
has no idea that such milk existed. In that case,
9.8 liters of milk is nonpresuppositional, and we
will focus on this reading in this paper. Musan
(1995) observes that the temporal interpretation of
a nonpresuppositional noun phrase is obligatorily
temporally dependent on the main predicate. In the
German example in (19), unless Einige is stressed,
which would indicate presuppositionality, the tem-
poral interpretation of Einige Professoren must co-
incide with that of glücklich, so the sentence is only
understood as talking about individuals who were
professors in the sixties.

(19) Einige
some

Professoren
professors

waren
were

in
in

den
the

sechziger
sixties

Jahren glücklich.
happy

(Musan, 1995, p. 79)

As for (10-a), we see that it talks about entities that
were milk at the time of production, as Musan’s
generalization predicts. What about the temporal
interpretation of the measuring phrase 9.8 liters?
Intuitively, what matters here is the volume of milk
as measured at the time of production. As a matter
of fact, milk shrinks in volume when cooled. So
if the produced milk was refrigerated in the tank

after the milking, then its volume must have be-
come smaller than at the time of production. How-
ever, none of such concerns seem to matter in judg-
ing whether (10-a) is true.12 I therefore suppose
that Musan’s generalization extends to measuring
phrases (Shimada, 2009). That is to say, the tem-
poral interpretation of the measuring phrase of a
nonpresuppositional noun phrase is obligatorily de-
pendent on the main predicate. But then, we see a
problem in the summands in (18), which are:

µpk
liter

(∨
(JmilkK (pk)∩ Jthe cow producedK (tk))

)
.

Here, what is measured is the milk produced during
tk, but it is measure at pk, the endpoint of tk. This
means that what is produced, say, in the first half
of tk is not measured at the time of its production.
However, if we assume that volume change can
only be so gradual, then making the splitting finer
and finer will lead to a more and more precise
measurement.

At this point, it must be evident that we need to
look at infinitesimally small subintervals. In other
words, we need the full power of integration. In-
deed, Krifka (1989) suggests using a semantically
well-motivated ‘calculus’ (p. 91) to analyze such
expressions as drink wine, and my idea is to carry
this out literally.13 Now, the set of entities that the
cow produced during [(p, p+ h)], where h > 0, is
given by

Jthe cow producedK ([(p, p+ h)]).

Suppose that x belongs to this set. Is x milk at
[(p, p+ h)]? Definitely not. Halfway into this time
period, say at p+ h/2, some part of x has yet to be
produced, so not only was that part not milk, but it
had measure zero. Therefore, in order to correctly
predicate the mass noun milk of x, it has to be
done at p + h, when all of x has been produced
(ignoring the possible partial loss of x due to the
calf consuming it by that point). Then, the total
milk that the cow produced during [(p, p+ h)], for

12Granted that in reality, the volume of milk does not change
so wildly as its temperature changes, but if one imagines that
it does, this intuition will be clearer.

13In Shimada (2009), I treated mass nouns and verbs of
production/consumption as essentially denoting relations be-
tween time points and entities. I think that that was the wrong
idea, and now I am a proponent of the view that “times” that
nouns and verbs are predicated of have positive length. From
a measure-theoretic perspective, points are as good as noth-
ingness. Simply put, size matters!



which we shall write αp([(p, p+ h)]), is

αp([(p, p+ h)]) =
∨
(JmilkK (p+ h) ∩

Jthe cow producedK ([(p, p+ h)])),

and its size can be meaningfully measured, again,
only at p+ h, which is

µp+h
liter (αp([(p, p+ h)])).

Since the average rate of milk production during
[(p, p + h)] in terms of measurement at p + h is
given by dividing the above by h, the rate ϱp(p) of
milk production at p will be obtained by taking its
limit:

ϱp(p) = lim
h→0+

µp+h
liter (αp([(p, p+ h)]))

h
.

The total amount of milk production is obtained by
integrating it over yesterday, so the truth conditions
of (10-a) will be expressed as∫

ystd
ϱp dµL ≥ 9.8.

This is a Lebesgue integral (vide Halmos, 1950),
and µL is the Lebesgue measure. Similarly, the rate
ϱc(p) of milk consumption at p can be calculated
by

ϱc(p) = lim
h→0+

µp−h
liter (αc([(p− h, p)]))

h
,

where

αc([(p− h, p)]) =
∨
(JmilkK (p− h) ∩

Jthe calf consumedK ([(p− h, p)])).

To calculate ϱc(p), we now have to look at intervals
ending at p since the milk consumed by the calf no
longer exists after p. (10-b) can then be analyzed
as

(20)
∫

ystd
ϱc dµL ≥ 9.8.

6 Telicity and Integration

Since Verkuyl (1972), it has been known that the
type of direct object can affect the aspectual inter-
pretation of the whole VP. If the direct object is a
bare noun as in (21), the VP becomes atelic (i.e.
having no endpoint) and can take a for temporal
PP.

(21) The calf consumed milk for 90 seconds
yesterday.

In contrast, if the direct object is quantified as in
(22) and (23), the VP becomes telic (i.e. having an
endpoint) and incompatible with a for temporal PP.

(22) a. The calf consumed 9.8 liters of milk
yesterday. (= (10-b))

b. *The calf consumed 9.8 liters of milk
for 90 seconds yesterday.

(23) a. The calf consumed some milk yester-
day.

b. *The calf consumed some milk for 90
seconds yesterday.

In this final section, I will sketch how our approach
might deal with this phenomenon, leaving a fuller
theoretical development and comparisons with ex-
isting theories (Krifka, 1989, 1992, 1998; Zucchi
and White, 2001; Rothstein, 2004 inter alia) for a
future occasion.

First, we need to know how for temporal PPs
are analyzed. Obviously, they measure the length
of times, and I say that this is achieved by means
of integration of functions from T into R. For
concreteness, let’s consider the following sentence:

(24) Ymir ran for six hours yesterday.

Assuming that the verb ran denotes a relation be-
tween times and entities, the denotation of Ymir
ran will be the set of times where Ymir ran.14 To
calculate the total length of Ymir’s running, we
need to get the set R of time points at which Ymir
was running, and this may be given by the follow-
ing (cf. our definition and discussion of the mass
noun denotation for time points):

R =
⋃

{G | G open, G ̸= ∅, [G] ∈ JYmir ranK }.

The PP for six hours says that the intersection of
this set and the set of time points in yesterday is
at least 6 · 602 seconds long. Assuming that µL

measures times in seconds, this can be expressed,
using a Lebesgue integral, as∫

ystd
χR dµL ≥ 6 · 602,

where χR is the characteristic function of R.
14Authors like Taylor (1977) and Dowty (1979) argue that

activities (such as run) have minimal parts, and if that is the
case, JYmir ranK will not be an ideal in T .



Let’s return to (21). We can regard the calf con-
sumed milk as denoting the set of times where the
calf consumed milk. If we are to trace our analysis
of (24) above, we should derive from this the set of
time points at which the calf was consuming milk,
and integrate its characteristic function. However,
in this case, we can directly get to the time points
at which the calf was consuming milk, as they must
coincide with the time points at which the rate of
milk consumption is positive.15 Using ϱc from
the previous section, (21) will then be analyzed as
follows:

(25)
∫

ystd
χ{ p∈T | ϱc(p)>0 } dµL ≥ 90.

It should now be apparent why (22-b) does not
work. Both the expressions 9.8 liters and for 90
seconds require integration of a function from T
into R, so we need two integrals. However, once
the time-point variable is ‘used up’ by one integral,
it will no longer be available for the other. This
point might become transparent if we rewrite the
integrands in (20) and (25) in λ notation:

(20′)
∫

ystd
[λp ∈ T. ϱc(p)] dµL ≥ 9.8.

(25′)
∫

ystd
[λp ∈ T. ϱc(p) > 0] dµL ≥ 90.

As you can see, the time-point variable p gets
bound in an integral, so it cannot be further used to
define a meaningful integrand for another integral.
This situation is analogous to the variable binding
in the formula ∀x∃xP (x); the inner quantifier ∃x
binds the occurrence of x in P (x), and as a result,
the outer quantifier ∀x cannot bind it.

The contrast in (23) presents difficulties to theo-
ries like Krifka’s, which will expect the VP to be
atelic because proper parts of some milk are still
some milk. Our approach treats (23) in much the
same way as (22). (23-a) involves integration of the
rate of milk-consumption just like (22-a), except
that the consumed amount is unspecified, so it is
analyzed as follows:∫

ystd
ϱc dµL > 0.

15Accordingly, Jthe calf consumed milkK as a set of times
will be given as the following principal ideal in T :

Jthe calf consumed milkK = ↓[{ p ∈ T | ϱc(p) > 0 }].

(23-b) is bad for the same reason as (22-b) is.
Finally, we note that in temporal PPs will cor-

respond to intervals of integration. It has been
observed in the literature that in temporal PPs go
with telic VPs, as demonstrated by (26).

(26) The calf consumed 9.8 liters of milk in
two days.

Here, the PP in two days plays the same role as
yesterday in (22-a), except that it is quantified.
Therefore, it can be analyzed as something like
the following:

(27) There is a time interval I (beginning at
some contextually salient time point) such
that µL(I) = 2 · 24 · 602 and∫

I
ϱc dµL ≥ 9.8.

In fact, a for temporal PP and an in temporal PP
can co-occur as in (28), and this can be straightfor-
wardly analyzed in much the same way, as shown
in (29), where R is as defined earlier.

(28) Ymir ran for six hours in two days.

(29) There is a time interval I (beginning at
some contextually salient time point) such
that µL(I) = 2 · 24 · 602 and∫

I
χR dµL ≥ 6 · 602.

7 Conclusion

By examining sentences involving mass nouns, we
outlined an ontology based on the view that to be is
to measure positively. Regarding mass noun deno-
tations, we argued that our intuition is best captured
if they are thought to give rise to Galois connec-
tions, and showed that it is possible to derive mass
noun denotations for time points from those for
time intervals, and vice versa. Our approach allows
one to talk rigorously about changes of states and
about events of continuous nature. In particular,
we argued that sentences of continuous production
or consumption inherently require mathematical
integration. Since our theory is framed in terms
of measure theory, they receive a natural treatment
with Lebesgue integration. In fact, regardless of
whether or not mass nouns (or events of continu-
ous nature) are involved, it is expected that a great
deal of existential quantification may be eliminated



from the truth conditions of natural language sen-
tences in favor of conditions on Lebesgue integrals;
one would only need to invoke appropriate mea-
sures for involved nouns and verbs. Finally, we
sketched how we might develop a theory of telic-
ity on our approach. I hope to have demonstrated
both the merit and necessity of a measure-theoretic
approach to natural language semantics.

Obviously, we have only scratched the surface
of this new direction of development, and much
remains to be investigated and to be elaborated
upon. For instance, we treated nouns and verbs
as denoting relations between times and entities,
but a more precise analysis should include even-
tualities. In such an analysis, mass nouns will be
associated with states, and verbs of production or
consumption with processes of some sort. The
times that we have so far associated with nouns and
verbs will correspond to (the equivalence classes
of) the projections of eventualities onto the time
axis via something like Krifka’s (1989) temporal
trace function. The different properties exhibited
by denotations of nouns and verbs should then be
ascribed to the different types of underlying eventu-
alities. Also, while the Lebesgue-integral method
yields a satisfactory treatment as far as meaning is
concerned, it gives one a good deal of headache
trying to work out how all this may be achieved
compositionally.

Finally, a note on possible worlds is in order. So
far, we have fixed the world parameter and focused
exclusively on temporal changes, but much similar
development is expected for worlds as well. If we
trace our train of discussion, we should be dealing
mainly with (equivalence classes of) sets of pos-
sible worlds of positive measure rather than with
possible worlds per se, just as we have decided
to deal mainly with sets of time points of posi-
tive measure rather than time points. Those sets
of possible worlds could be viewed as represent-
ing partial information of a world, so they might
be comparable to situations (Barwise and Perry,
1983; Kratzer, 1989). The obvious candidate for
the measure on these ‘situations’ will be one that
assigns them their probabilities. By positing a ‘situ-
ational trace function’ similar to the temporal trace
function, predicates could be analyzed as relations
between situations and entities, if the temporal pa-
rameter is fixed. Lebesgue integrals over situations
will calculate expected values. All of this is mere
speculation at this point, but I hope to delve deeper
into these and other matters in future research.
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