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Abstract

The class of tier-based strictly 2-local (TSL-
2) languages has been shown to be useful in
modeling patterns in both phonology (Heinz
et al., 2011) and syntax (Graf, 2022a). This
paper presents an algorithm for learning the
intersection closure of the TSL-2 languages, the
multi-TSL-2 (MTSL2) languages over arbitrary
structures. The algorithm builds on prior work
on learning a subclass of MTSL2 over trees
(Swanson, 2024b), as well as insights about
searching partially ordered spaces (Chandlee
et al., 2019). I show that the algorithm correctly
learns the MTSL2 class from a limited data
sample and discuss tradeoffs with the existing
approach offered by Swanson (2024b).

1 Introduction

Understanding the structure of linguistic knowl-
edge and how humans acquire this knowledge from
limited input is one of the key questions in linguis-
tics. The field of subregular linguistics (Heinz,
2018, Graf, 2022a a.o.) approaches this question
by seeking out formal language classes which are
complex enough to represent the range of patterns
found in human language, but structured enough to
be efficiently learned. Creating learning algorithms
for these classes not only demonstrates that they
can be learned, but also sheds light on how differ-
ent learning strategies behave, what kinds of time
and data requirements they impose, and how they
compare with human learners.

The subregular class of tier-based strictly local
(TSL) languages has recently emerged as partic-
ularly relevant for linguists. Intuitively, TSL lan-
guages can capture dependencies which are im-
mediately local, once a certain set of irrelevant
elements is ignored (Lambert, 2023). This class is
useful for analyzing many of the patterns found in
human language, where long-distance dependen-
cies are often restricted or relativized to a particular
set of elements (Heinz, 2018). One such example

is harmony patterns, like the sibilant harmony pat-
tern found in Samala, a Chumash language from
southern California. In Samala, sibilants in the
same word must agree in anteriority, so words con-
taining ‘s...s’ are permitted, but those with ‘*s...S’
are forbidden (Hansson, 2010). The TSL grammar
for this pattern consists of a tier for the sibilant
sounds, tier = {s, S}, and constraints over that tier
banning adjacent sibilants which disagree in ante-
riority: constraints = *sS, *Ss. So, a word like
[sapitsolus] (‘he has a stroke of good luck’) is ac-
ceptable because its projection onto the sibilant
tier, “sss”, does not contain any of these banned
factors. Adding the past-tense suffix /-waS/, how-
ever, results in the form [SapitSoluSwaS]. This form
is grammatical, with tier projection “SSSS", but the
fully faithful form [sapitsolus-waS] is ungrammat-
ical, since its tier projection “sssS" contains the
banned factor “sS". Specifically, this pattern is TSL-
2, since the constraints needed to enforce it contain
at most two elements each.

TSL-2 can largely capture the typology of phono-
tactic patterns seen in natural language, including
local dependencies, long-distance harmony, and
blocking (McMullin and Hansson, 2014). In ad-
dition, a variety of syntactic patterns have been
shown to belong to the parallel class of TSL-2 over
tree structures, including verb agreement (Han-
son, 2023b), case assignment (Hanson, 2023a), and
movement patterns (Graf, 2022b). Moreover, the
TSL-k languages are known to be efficiently learn-
able for any fixed value of k (Jardine and McMullin,
2017, Lambert, 2021). Human languages, however,
typically involve many such TSL patterns operat-
ing at once, and these may interact with each other.
To capture multiple TSL patterns which are ac-
tive at once, the more complex class of multi-TSL
(MTSL) is needed. An MTSL-k language is simply
the intersection of one or more TSL-k languages,
in other words “several TSL patterns applying at
once”.



Existing work on learning MTSL is limited to
an algorithm sketched by McMullin et al. (2019)
and adapted by Swanson (2024b) to be provably
efficient and generalizable across trees and strings.
This algorithm, however, does not learn the exact
class of MTSL, but rather a subclass with a few ad-
ditional restrictions–restrictions which prove prob-
lematic in the realm of syntax, where they do not
seem to hold on natural language data (see Section
3).

This paper introduces MTSL-BUFIA, an algo-
rithm which learns the class of MTSL proper with-
out these additional restrictions. I show that MTSL-
BUFIA exactly identifies the class of MTSL in the
limit, in the sense of Gold (1967) and has polyno-
mial data complexity, in the sense of de la Higuera
(1997). However it has exponential time complex-
ity in the worst case.

The remainder of this paper is organized as fol-
lows: Section 2 offers definitions for relevant terms
used in this paper. Section 3 briefly recaps the ex-
isting MTSL learning work and summarizes the
outstanding problems. Section 4 describes the
novel MTSL learning algorithm MTSL-BUFIA,
and Section 5 works through an example of it in
action. Section 6 defines the representative sample
for MTSL and proves that MTSL-BUFIA exactly
identifies the class in the limit. Finally, Section 8
offers future directions and concludes.

2 Preliminaries

2.1 Representations and Relational Structure

An important insight from Swanson (2024b) is that
MTSL-2 can be defined over any type of structure
built from symbols and the relations between them.
Rogers and Lambert (2019) describe this type of
relational model and show some of their properties.
I adopt adapted versions of three of their definitions
here:

Definition 2.1 (Relational Structure). A relational
signature, R, is a finite ranked alphabet of re-
lation symbols. An R-structure is a tuple S =
⟨D,RS1 ,R

S
2 ...⟩ where D is the domain and each

RSi is an interpretation of some symbol from R.

Definition 2.2 (Homomorphism). Given R-
structures S and S ′ with domains D and D′

respectively, a homomorphism from S to S ′
is a (total) function h ∶ D → D′ such that
a⃗ ∈ RSÔ⇒h(a⃗) ∈ RS′

Definition 2.3 (2-Factor). Let F and S be rela-

tional structures with domains F and D respec-
tively. F is a 2-factor of S iff:

1. ∣F ∣ = 2

2. ∀x, y ∈ F [x ≠ yÔ⇒∃R ∈ R, a⃗ ∈ RF [x, y
both occur in a⃗]]]

3. ∃h ∶ F →D, a homomorphism

The set of all 2-factors of any structure S is
denoted 2fac(S). Additionally, given some set
of structures I , 2fac(I) ∶= {f ∣ ∃S ∈ I[f ∈
2fac(S)]}.

2.2 Strings and Trees
These definitions are highly general, and can cover
many types of structures. For the purposes of mod-
eling language, however, the primary areas of in-
terest are string models and tree models. I offer
examples here to illustrate how these two kinds of
models operate.

Example 2.1 (String Models). This example is
adapted from Rogers and Lambert (2019). Let
s be a string over the alphabet Σ. Let ∣s∣ be the
length of s. A string model for s is a structure:

M◁(s) ∶= ⟨Ds,◁s, P s
σ∈Σ⟩

Where:
Ds−is a set of natural numbers such that:

1. 0 ∈D

2. ∀i, j ∈D[i + 1 = j⇐⇒i◁ j]

◁s−is the successor relation on s

P s
σ−is the set of all positions in s at which the

symbol σ occurs.

So the string “pat” would be modeled:

M◁(pat) ∶= ⟨D = {0,1,2},◁ = {(0,1), (1,2)},
Pp = {0}, Pa = {1}, Pt = {2}⟩

And the 2-factor corresponding to the “pa” sub-
string would be modeled:

M◁(pa) ∶= ⟨D = {0,1},◁ = {(0,1)},
Pp = {0}, Pa = {1}⟩

These can trivially be related by a homomor-
phism h(x)→ x.



Example 2.2 (Tree Models). Let t be a tree over
the alphabet Σ. Let ∣t∣ be the number of nodes in t.
A tree model for t is a structure:

M◁,*(t) ∶= ⟨Dt,◁t,*tP t
σ∈Σ⟩

Where:
Dt−is a set of strings of natural numbers, includ-

ing the empty string ε, such that:

1. ε ∈D

2. ∀u ∈ N∗, j ∈ N[uj ∈DÔ⇒u ∈D ∧ u◁ uj]

3. ∀u, v ∈ N∗[u◁ vÔ⇒∃i ∈ N[v = ui]]

4. ∀u ∈ N∗, j ∈ N[uj ∈ DÔ⇒∀i ∈ N[i <
jÔ⇒ui ∈D]]

5. ∀u ∈ N∗, j > 0 ∈ N[uj ∈DÔ⇒u(j −1)*uj]

6. ∀u, v ∈ N∗[u * vÔ⇒∃i, j ∈ N,w ∈ N∗[u =
wi ∧ v = wj ∧ i + 1 = j]]

◁t−is the proper dominance relation on t

*t−is the immediate left sibling relation on t

P t
σ−is the set of all positions in t at which the

symbol σ occurs.

These domain definitions essentially encode or-
dered addresses to each element, which is relevant
for defining how tiers and 2-paths are constructed.
For strings, this address encoding is a simple posi-
tional index. For trees, it is Gorn addresses, which
encode the path through the tree required to reach
that node from the root. Notably, these addresses
are computationally easy to assign, requiring only
a single traversal (O(n) time) to do so.

In both of these structures, the unary relations
of the form Pσ induce a partition on the domain
elements, with each element being a member of
exactly one of these sets. We can thus refer to the
label of any given element l(α) = σ⇐⇒Pσ(α).
Definition 2.4 (Tier Projection). A tier projection
function is a function τ() which takes as input a
relational structure S with domain D and relations
R and a set of unary relations P ⊆ R and returns an
output structure S ′ for which the following hold:

1. ∀P ∈ P[P = ∅]

2. ∀e ∈D[∀P ∈ P[P (e)Ô⇒e /∈D′]]

3. ∀R ∈ R[R /∈ PÔ⇒((RS(e1, e2, ...en)∧ /∃
P ∈ P[P (ei<=n)])Ô⇒RS

′(e1, e2, ...en))]

For a structure S over some alphabet Σ, with each
element in the structure bearing exactly one sym-
bol σ ∈ Σ (like trees or strings) we can also write
τ(S, T ) = τ(S,P), where T = Σ − {σ∣PSσ /∈ P}.

For strings, we use the tier projection function

τs(⟨D,◁, Pσ⟩σ∈Σ, T ) ∶= ⟨DT ,◁T , Pσ⟩σ∈T
where:

DT ∶= {e ∈D∣l(e) ∈ T}

◁T ∶= {⟨x, y⟩∣x ∈D′ ∧ y ∈D′ ∧ x < y∧
/∃ z ∈D′[x < z < y]}

Intuitively, this is just removing the non-tier ele-
ments and re-stringing the elements back together
in the successor relation in their original order. In
other words, precedence is preserved.

For trees, we use the tier projection function

τt(⟨D,◁,*, Pσ⟩σ∈Σ, T ) ∶= ⟨DT ,◁T ,*T , Pσ⟩σ∈T
where:

DT ∶= {e ∈D∣l(e) ∈ T} ∪ {⋊,⋉}

◁T ∶= {⟨x, y⟩∣x ∈D′∧y ∈D′∧∃u ∈ N∗[y = xu]∧
/∃ z ∈D′[∃u, v ∈ N∗[z = xu ∧ y = zv]]} ∪
{⟨⋊, x⟩∣ /∃ u, v ∈ N∗[u ∈D′ ∧ x = uv]} ∪

{⟨x,⋉⟩∣ /∃ u, v ∈ N∗[u ∈D′ ∧ u = xv]}

*T ∶= {⟨x, y⟩∣
∃u, v,w ∈ N∗, i < j ∈ N[x = uiv ∧ y = ujw]∧

∃u ∈ N∗[u◁T x ∧ u◁T y∧
/∃ z ∈D′[∃v,w, q ∈ N∗, i < j ∈ N[x = viw∧z = vjq]∧
∃v,w, q ∈ N∗, i < j ∈ N[z = viw ∧ y = vjq]∧

u◁T z]]}

Intuitively, this can be thought of as ripping out
all non-tier elements from the tree and attaching
their children as additional daughters in the same
slot that node was pulled out of. For notational
convenience, we also stipulate designated head and
foot markers, ⋊ and ⋉ which mark the upper and
lower edges of the tree. The ⋊ marker also ensures
that the output is a well-formed tree by maintaining
parent closure.



a

b c

b a

2-paths: ⟨b * a,∅⟩
⟨a◁ b,∅⟩ ⟨c◁ b,∅⟩ ⟨b * a,{b, c}⟩
⟨a◁ b,{c}⟩ ⟨c◁ a,∅⟩ ⟨b * b,{c}⟩
⟨a◁ c,∅⟩ ⟨a◁ a,{c}⟩ ⟨b * c,∅⟩

Table 1: Example tree and 2-paths. Solid arrows indicate dominance relation, and dashed arrows indicate sibling
relation.

Definition 2.5 (2-Path). The notion of 2-paths was
introduced by Jardine and Heinz (2016), and it is
used to represent the idea of intervention in poten-
tial 2-factors. A 2-path (for a structure) is a tuple
⟨f, V ⟩ where f is a 2-factor and V is a set of sym-
bols which prevent that 2-factor from being present.
This set of symbols which, if removed, would allow
the 2-factor to be present is known as an intervener
set for that 2-factor. The 2-path for factor f with
intervener set V is denoted ⟨f, V ⟩. For some set of
structures D, we say that paths(D) is all 2-paths
present in all structures in D. For strings and trees,
2-paths can be computed in much the same way
as tier projections, using the addresses of each ele-
ment (Jardine and Heinz, 2016; Swanson, 2024b).

Table 1 demonstrates finding the 2-paths for an
example tree. In this example, the tree is visualized
with the labels of each domain element occupying
each node, and with solid arrows indicating dom-
inance and dashed arrows indicating siblinghood.
Note that every relation which is present in this
structure corresponds to a 2-path with an empty
intervener set.

The remainder of this paper will not treat spe-
cific structures differently, but will instead deal
exclusively with tiers, 2-factors, and 2-paths.

Definition 2.6 (MTSL). An MTSL language is
a set of structures over some alphabet Σ for
which membership is defined by a grammar G =
¬⟨f1, T1⟩ ∧ ¬⟨f2, T2⟩ ∧ ...¬⟨fi, Ti⟩ of 2-factor, tier
pairs. A structure S is in the language (notated
L(G)) iff /∃ ⟨f, T ∈ G⟩[f ∈ 2fac(τ(S, T ))].

3 Existing Approach: MT2SLIA

Swanson (2024b) introduces the multi tier-based
2-strictly local inference algorithm (MT2SLIA), a
learning algorithm for a subclass of MTSL (over
both trees and strings) which runs in polynomial
time and data. This algorithm uses the idea that any
2-factor which is not present in the input sample
must be banned on some tier. For each of these
missing 2-factors, it finds all the intervener sets

present in the data and uses these to construct the
tier which forbids that 2-factor. To do this, elements
from the smallest intervener sets are added to the
hypothesized tier until each intervener set contains
at least one tier element (this ensures that the 2-
factor in question is in fact absent on that tier in the
input data).

The MT2SLIA is provably efficient, operating
in polynomial time and data with respect to the
size of the target grammar. However, the concept
class it learns imposes two additional requirements
on the MTSL languages that it can induce. Firstly,
a given structure can be banned on at most one
tier. Secondly, all tier elements (for each tier) must
be independent from all non-tier elements for that
tier (meaning they can freely occur with or without
each other).

This second restriction introduces issues in the
realm of syntax, where many theories of syntac-
tic structure predict that syntactic elements are not
independent of each other in this way. In particu-
lar, theories of syntax rely on the universal spine
(aka hierarchy of projections), which is the idea
that certain functional elements always show up in
a certain order in syntactic trees. This inherently
introduces exactly the kind of element dependence
which cannot be represented by the subclass of
MTSL which the MT2SLIA learns. Indeed, Swan-
son (2024a) demonstrates how the universal spine
disrupts the ability of the MT2SLIA to correctly
learn the English that-trace effect pattern, which
can be represented with a fairly simple TSL-2 anal-
ysis (Graf, 2022c). This poses a challenge to the
idea that MTSL with these restrictions is a good
model of possible human languages, and under-
scores the need for algorithms which can learn the
class of MTSL proper.

4 MTSL-BUFIA

The algorithm introduced in this section combines
key insights from the MT2SLIA and from the
Bottom-Up Factor Inference Algorithm (BUFIA)



introduced by (Chandlee et al., 2019). Similar to
the MT2SLIA, this algorithm leverages the idea
that any 2-factor which is not present in the in-
put data must be absent because it is banned on
at least one tier. Additionally, 2-paths are used
to inform how these forbidding tiers should be
constructed: each set of interveners for a given
2-factor must contain at least one element from
each tier on which that 2-factor is banned. Un-
like the MT2SLIA, however, this algorithm also
leverages the fact that the space of possible forbid-
ding tiers is partially ordered, and can therefore be
traversed using a bottom-up breadth-first search,
where the search space is pruned as constraints are
located. This search strategy is inspired by (Chan-
dlee et al., 2019)’s Bottom-Up Factor Inference
Algorithm (BUFIA). Using this approach, the most
general tiers on which 2-factors do not appear can
be exhaustively located.

4.1 Canonical Form

It is possible for multiple distinct MTSL grammars
to be extensionally equivalent, i.e., generate the
same language. For this reason, I provide a canoni-
cal form for MTSL grammars.

Definition 4.1 (MTSL Canonical Grammar). The
Canonical Grammar for an MTSL language is a
conjunction of 2-factor, tier pairs G = ¬⟨f0, T0⟩ ∧
¬⟨f1, T1⟩ ∧ ... for which the following hold:

1. ∀¬⟨fi, Ti⟩,¬⟨fj , Tj⟩ ∈ G[fi = fjÔ⇒Ti /⊆
Tj ∧ Tj /⊆ Ti]

2. ∀⟨fi, Ti⟩[L(G) ⊆ L(¬⟨fi, Ti⟩)Ô⇒∃T ′
i [T ′

i ⊆
Ti ∧ ¬⟨fi, T ′

i ⟩ ∈ G]]

This says that in order for an MTSL grammar to
be canonical, 1) all forbidding tiers for the same
factor must be incomparable, and 2) if the language
generated by G obeys some constraint against a
2-factor fi on some tier Ti, then there must be
a constraint in G which bans fi on Ti or some
subset tier. The essential idea is that all surface-
true constraints must be represented in the grammar
in their most general form (i.e., on the smallest
possible tier).

Lemma 1. Any MTSL grammar is extensionally
equivalent to a unique canonical MTSL grammar.

Proof. Consider any MTSL grammar G. Suppose
L(G) obeys some constraint ¬⟨fi, Ti⟩ /∈ G. We
can then construct a grammar G′ = G ∧ ¬⟨fi, Ti⟩.

Since ¬⟨fi, Ti⟩ is true over L(G) and the two gram-
mars differ only in the presence of this constraint,
L(G′) = L(G). This process can be repeated
to yield a G′ for which /∃ ¬⟨fi, Ti⟩[¬⟨fi, Ti⟩ /∈
G′ ∧ L(G′) ⊆ L(¬⟨fi, Ti⟩)] and L(G′) = L(G).
G′ then meets requirement 2) of a canonical gram-
mar, since every surface-true constraint of L(G) is
present in G′.

Then, if ∃¬⟨fi, Ti⟩,¬⟨fi, Tj⟩ ∈ G′[Ti ⊂ Tj],
we can construct G′′ = G′ − ¬⟨fi, Tj⟩. Since
any form which contains the 2-factor fi on the
Tj tier will necessarily also contain fi on the Ti

tier, any langauge which obeys ¬⟨fi, Ti⟩ must also
obey ¬⟨fi, Tj⟩. Therefore L(G′′) = L(G′). Ad-
ditionally, G′′ still meets requirement 2) since the
subset tier is always preserved. Once again, we
can repeat this process until we reach a G′′ for
which /∃ ¬⟨fi, Ti⟩,¬⟨fi, Tj⟩ ∈ G′[Ti ⊂ Tj] (i.e., re-
quirement 1) holds) and L(G′′) = L(G′) = L(G).
G′′ thus meets both requirements for a canonical
MTSL grammar and is equivalent to G, meaning
any MTSL grammar is equivalent to some canoni-
cal MTSL grammar.

Next, consider any canonical MTSL grammar
G, and consider some other canonical MTSL gram-
mar G′ such that L(G′) = L(G). If G′ ≠ G, it
must be the case that either G′ contains some con-
straint which is not in G, or that G contains some
constraint which is not in G′. Suppose G′ con-
tains a constraint ¬⟨fi, Ti⟩ which is not in G. Since
L(G) = L(G′), L(G) must obey this constraint.
Since G is canonical, it must then (by require-
ment 2) contain some constraint ¬⟨fi, Tj⟩ such that
Tj ⊂ Ti. But then, since G′ is also canonical and
must obey ¬⟨fi, Tj⟩, G′ must contain some con-
straint ¬⟨fi, Tk⟩ such that Tk ⊂ Tj . But then by
transitivity, Tk ⊂ Ti, meaning that G′ violates re-
quirement 1 and cannot be canonical. Thus, G′

cannot contain any constraints which are not in G,
and G′ ⊆ G. Suppose G contains some constraint
¬⟨fi, Ti⟩ not in G′. By the same logic, G′ must
then contain some ¬⟨fi, Tj⟩, and G must contain
some ¬⟨fi, Tk⟩ such that Tk ⊂ Tj ⊂ Ti. This means
G violates requirement 1 and cannot be canonical.
Thus, G ⊆ G′, and G′ = G, meaning any canonical
MTSL grammar is unique.

4.2 BUFIA
To find the forbidding tier(s) for each 2-factor,
MTSL-BUFIA uses a bottom-up, breadth-first
search of the partially ordered set of possible tiers.
This approach is inspired by BUFIA (Chandlee



{a, b}✓

{a, b, d}✗{a, b, c}✓

{a, b, c, d}✗

Figure 1: Hierarchy of possible forbidding tiers for ab
over Σ = {a, b, c, d}. If ab is absent from a particular
tier (denoted by ✗), it must be absent from all superset
tiers. If it is present on a tier (denoted ✓) it is necesarily
present on all subset tiers.

et al., 2019; Rawski, 2021), an algorithm designed
to find the most general constraints over this type
of partially ordered search space.

It is easy enough to see that the set of possible
tiers (i.e., the powerset of Σ) is partially ordered
under the subset relation. Furthermore, the set of
constraints introduced by these possible tiers (for
the same 2-factor) obeys that same partial order-
ing. For example, consider a toy language with
alphabet Σ = {a, b, c, d} with just one constraint:
⟨ab,{a, b, d}⟩. So strings like adbcca and bcaccdb
(with tier projections adba and badb) are in the
language, but daccbda is out, since its projection
(dabda) includes the substring ab. It is immediately
clear that no string in this language can contain
ab on the superset tier of {a, b, c, d}(= Σ), since
this would necessarily mean ab is present on the
{a, b, d} tier as well. More generally, a factor fi is
absent from a tier Ti if and only if every possible
occurrence of fi is precluded by the intervention of
some element from Ti. If Ti ⊂ Tj , then any factor
absent from Ti will also be absent from Tj , since
the intervention of an element from Ti entails the
intervention of an element from Tj (all elements of
Ti are in Tj). Therefore, any language which obeys
the constraint ⟨fi, Ti⟩ obeys all other constraints
⟨fi, Tj⟩ where Ti ⊂ Tj . Figure 1 visualizes this
property on the set of possible forbidding tiers for
this toy language rooted at the {a, b} tier.

These entailment relationships between possible
constraints are exactly what BUFIA uses for learn-
ing. Starting from the “bottom", BUFIA proceeds
upwards layer by layer, looking for constraints
which are surface-true. When it finds them, it
adds them to the grammar and prunes away the sec-
tion of the search space above that new constraint.
Chandlee et al. (2019) also outline several useful
learning guarantees for this algorithm. Namely,
BUFIA is guaranteed to find only and all incom-

parable constraints which are consistent with the
input data, and it is guaranteed to find the most
general such constraints. These are exactly the
properties required to construct canonical MTSL
grammars.

4.3 Algorithm

MTSL-BUFIA, defined in Algorithm 1, operates as
follows: First, it finds all possible 2-factors which
are absent from the input sample. This absence is
an indicator that each of these 2-factors is forbidden
on some tier(s). The algorithm then iterates through
these missing 2-factors and computes the intervener
sets for each. Once intervener sets are collected,
the algorithm begins its bottom-up search for the
smallest tier(s) on which that 2-factor is missing. It
begins by looking at the tier consisting only of the
symbols present in the 2-factor itself, and proceeds
breadth-first to increasingly larger possible tiers.
To determine whether a 2-factor is absent from a
tier projection t, it must be the case that there is
no intervener set i for that 2-factor such that i ∩ t
is empty. In other words, each intervener set must
contain some tier element, otherwise the 2-factor
in question is present on that tier.

Any time the search encounters a tier where the
2-factor is not present in the data over that tier, the
2-factor, tier pair are added to the grammar, and all
supersets of that tier are removed from the search
space. In this way, the search space of possible
tiers is pruned as the search proceeds.

Once this bottom-up search has been conducted
for every 2-factor, the final grammar is returned.

5 Example

To demonstrate this algorithm in action, I will
use a toy example language in which local and
long-distance dependencies interact (this example
is string-based, but recall that this can be smoothly
generalized to tree structures as described in Sec-
tion 2). The string language we will consider
is defined by the following regular expression:
((ab+c)∣(eb+d))∗. This is all strings consisting of
any number of sequences of one a followed by one
or more bs followed by one c interspersed with any
number of sequences of one e followed by one or
more bs followed by one d. So abbbcebd, ebbbbbd,
and abcebdebdabbc are all valid strings in the lan-
guage, but abd and edac are not. This involves
local restrictions, for example a and e can only
be followed by b, but also non-local dependencies



Algorithm 1 MTSL-BUFIA
Data: Positive sample D
Result: Grammar G, a conjunction of ⟨2-factor,
forbidding tier⟩ pairs.

G := {}
B := 2fac(Σ∗) − 2fac(D)
foreach f ∶= ρ1Rρ2 ∈ B:
S ∶= {I for ⟨x, I⟩ ∈ paths(D) where x = f}
Q := [{ ρ1, ρ2 }]
while Q ≠ []:

T ′ = Q.pop()
if ∃⟨f, T ⟩ ∈ G[T ⊆ T ′]:

continue
if ∃V ∈ S[T ∩ V = ∅]:

Q.append(NextSupersets(T ′))
else:

G = G∪¬⟨f, T ′⟩
return ⋀

c∈G
c

which interact: b can be followed by c only in the
case where the first b in its sequence was preceded
by a, and similarly with d and e. This violates
the “tier-element independence" requirement of
the MT2SLIA, which stipulates that each element
on each tier must be independent from (i.e., not
bound to always occur next to) each non-tier el-
ement. However, in this language it is critical to
enforce constraints like “a cannot be followed by d
unless there is a e in between them". In this case, a,
d, and e must all be tier elements. However, b must
be off the tier, since its presence as an intervener
between a and d does not license the structure. But
none of these tier elements are independent from
b: each is required to either precede or follow a
b. Therefore, this language would not be learnable
by the MT2SLIA. As we will see, however, the
BUFIA-MTSL learner has no problem.

Suppose we are given the data presented in Ex-
ample 1.

D = abbbc, ebd, abcebdebdebd,
ebdebdabcabcabbcebd,

abcebdabcebdabcebd

(1)

In the first step, the algorithm will compute the 2-
factors which are missing from this sample. These
are given in the first column of Table 2.

Then, for each missing 2-factor, the intervener
sets will be computed. This is column 2 of Table 2.

✓{ a }

✓{ a, e }✓{ a, d }✗{ a, c }✗{ a, b }

✓{ a, d, e }

Figure 2: Caclulation of tiers for aa 2-factor.

✓{ b, d }

✓{ b, d, e }

✓{ b, c, d, e }

✓{ b, c, d }✓{ a, b, d }

✓{ a, b, c, d } ✗{ a, b, d, e }

Figure 3: Calculation of tiers for be 2-factor.

Finally, the algorithm will conduct a bottom-up
search of the possible tiers. The search procedure
is diagrammed in Figures 2 and 3, for the 2-factors
aa and db respectively. If each intervener set con-
tains at least one tier element, the factor is missing
on that tier, and the tier is added as a constraint
(notated by the ✗ symbol). For example, in Figure
2, the {a, b} tier is added as a forbidding tier for the
aa 2-factor because each intervener set contains a
b. This is exactly as expected–aa cannot be present
on the {a, b} tier because every a must be followed
by at least one b. Similarly, each a must be fol-
lowed by a c before another a can be present, and
so this 2-factor is also banned on the {a, c} tier.

For the db 2-factor, meanwhile, there must be ei-
ther a or e occurring between them, but projecting
just one to the tier would predict that that symbols
is always required. For example, if db were banned
on the {a, b, d} tier, the (licit) sequence ebdebd
would be banned, since its tier projection would be
bdbd, which contains the db 2-factor.

If a tier is not a forbidding tier (indicated with
✓), then the search continues upwards. Notice,
however, that supersets of previously added for-
bidding tiers are not searched, so the final set
{a, b, c, d, e} (i.e., Σ) is never reached in Figure
3, and the search in Figure 2 can get no higher
than {a, d, e}, since any other tiers that could be
searched would be supersets of one of the existing
forbidding tiers, {a, b} or {a, c}.

The final forbidding tier(s) for all 2-factors are
given in column three of Table 2.

In some ways, the grammar found by this al-



2-factor interveners tier(s)
aa { b, c }, { b, c, a }, { b, c, e, d }, { b, c, e, d, a } { a, b }, { a, c }
ac { b }, { a, b, c }, { b, c, e, d, a } { a, c, b }
ad { b, c, e }, { b, c, e, a }, { b, c, e, d }, { a, b, c, d, e } { a, d, b }, { a, d, c }, { a, d, e }
ae { b, c }, { b, c, a }, { b, c, a, e, d } { a, e, c }, { a, e, b }
ba { c }, { d }, { b, c }, { b, d }, { c, a, b }, { d, e, b }, { a, b, c, d }

{ c, e, b, d }, { d, a, b, c }, { a, b, c, d, e }
be { c }, { d }, { b, c }, { b, d }, { b, d, e }, { a, b, c }, { b, c, d, e }

{ a, b, c, d }, { b, c, d, e }, { a, b, c, d, e }
cb { a }, { e }, { a, b }, { b, e }, { a, b, c }, { e, b, d }, { a, b, c, e }

{ a, b, c, d }, { e, b, d, a }, { a, b, c, d, e }
cc { a, b }, { a, b, c }, { a, b, e, d }, { a, b, c, d, e } { c, a }, { c, b }
cd { e, b }, { e, b, d }, { a, b, c, e }, { a, b, c, d, e } { c, d, b }, { c, d, e }
db { a }, { e }, { a, b }, { b, e }, { a, b, c }, { e, b, d }, { a, b, d, e }

{ a, b, c, e }, { a, b, d, e }, { a, b, c, d, e }
dc { a, b }, { a, b, c }, { a, b, d, e }, { a, b, c, d, e } { d, c, a }, { d, c, b }
dd { e, b }, { e, b, d }, { e, b, a, c }, { a, b, c, d, e } { d, b }, { d, e }
ea { b, d }, { b, d, e }, { a, b, c, d, e } { a, b, e }, { a, d, e }
ec { b, d, a }, { b, d, a, e }, { b, d, a, c }, { a, b, c, d, e } { e, c, a }, { e, c, b }, { e, c, d }
ed { b }, { e, b, d }, { a, b, c, d, e } { e, d, b }
ee { b, d }, { b, d, e }, { b, d, a, c }, { a, b, c, d, e } { e, b }, { e, d }

Table 2: Missing 2-factors, intervener sets, and calculated tiers.

gorithm could be considered “inefficient", since
it contains some constraints that are not strictly
needed to enforce the target pattern. For example,
there is no need for the constraint ⟨ad,{a, b, d}⟩,
which enforces that a b must occur between a and
d, since the other constraints already enforce that b
is the only symbol which can follow a in the first
place. This, however, is part of the definition of
canonical grammar: if a constraint is true it must
be represented in the grammar. This allows the
grammar to be more universal by obviating the
question of which constraint should be used for a
given purpose.

6 Exact Identification in the Limit with
Polynomial Data

The approach adopted here follows the tradition of
grammatical inference, using the exact identifica-
tion in the limit learning paradigm (Gold, 1967)
with a polynomial bound on data (de la Higuera,
1997). Under this paradigm, the learner is pre-
sented with a positive text t of examples drawn
from the target language L. The first n in t are
denoted tn. The examples can appear in any order,
and may repeat, but for any given structure s in L,
it is guaranteed that there is some finite n ∈ N such
that s ∈ tn.

In this sense, it is assumed that the learner will
eventually receive a representative sample which
characterizes L with respect to MTSL-BUFIA.
Once this sample has been seen, the learner must
1) converge on the correct grammar and 2) not de-
viate from this grammar when more positive data
is presented.

Definition 6.1 (Grammar Size). For any MTSL-k
gramamr G, its size is defined by:

∣G∣ ∶= ∑
¬⟨f,T ⟩∈G

k + ∣T ∣

Definition 6.2 (Representative Sample). For a
MTSL language L over alphabet Σ whose grammar
is G = ⟨f0, T0⟩ ∧ ⟨f1, T1⟩ ∧ ...⟨fi, Ti⟩, a set D of
structures is a representative sample iff all of the
following hold:

1. ∀x ∈ 2fac(Σ)[x ∉ {f ∶ ∃⟨f, T ⟩ ∈ G}Ô⇒x ∈
2fac(D)]

2. ∀⟨f, T ⟩ ∈ G[∀σ ∈ T−symbols(f)[∃⟨f, V ⟩ ∈
2paths(D)[σ ∈ V ∧ ¬∃σ′ ∈ V [σ′ ∈ T ∧ σ′ ≠
σ]]]

3. ∀x ∈ {f ∶ ∃⟨f, T ⟩ ∈ G}[¬∃T ′[(⟨x,V ⟩ ∈
2paths(D)Ô⇒V ∩ T ′ ≠ ∅) ∧ (¬∃⟨x,T ⟩ ∈
G[T /⊆ T ′])]]



This essentially states that 1) a representative
sample must contain all 2-factors which are not
banned on any tier, 2) for each banned 2-factor and
each tier on which it is banned, every tier element
that is not part of the 2-factor itself must be present
in an intervener set (for that same 2-factor) which
contains no other tier elements, and 3) for each
banned 2-factor there can be no set of elements
which is “represented" (i.e., at least one element of
this set is present) in every intervener set (for that
2-factor) but which is not itself a superset of a tier
on which that 2-factor is banned.

Lemma 2. For a MTSL language L, the size of the
representative sample D for L is polynomial in the
size of G for any MTSL grammar G of L.

Proof. The first condition requires that all 2-factors
which are not banned on any tier are present in
the sample. The number of possible 2-factors will
vary with the type of structure being used, but it
will be limited to c ⋅ ∣Σ∣2 where c is the number of
possible relations (for trees this is two, while for
strings it is just one). Embedding these 2-factors in
well-formed structures (to form a data sample) may
require the addition of extra “connecting" symbols
(such as in the case for the sibling relation over
trees, where an additional parent node is needed).
Assuming the number of “connecting" symbols
required is bounded by another constant k (which
it is for both trees and strings), the total size will
be ck ⋅ ∣Σ∣2.

The second condition stipulates that each tier
element of each restricting tier for each banned 2-
factor must appear in some intervener set for that
2-factor without any other tier elements. Ensuring
these intervener sets requires structures containing
the two symbols present in the 2-factor, plus the tier
element, plus any additional “connecting" symbols
necessitated by the type of structure. These will
contain some constant number of symbols (just
3 in the case of strings and 3 or 4 in the case of
trees). Since one such structure is needed for each
tier symbol, the amount data required to satisfy
condition two is linear in the size of the grammar
(since this is just the number of total tier symbols
plus twice the number of 2-factors).

The third condition is about making sure that
there are “small enough" intervener sets repre-
sented in the sample (i.e., those uncluttered by
many non-tier elements). Constructing the smallest
possible sample which fufills conditions 1 and 2 en-
sures this condition without the need for additional

data.
Therefore, the space complexity of the represen-

tative sample is O(∣Σ∣2 + ∣G∣) (where ∣G∣ is the
number of total symbols present in G). Assuming
all alphabet symbols are used in the grammar, this
is polynomial in the size of the grammar.

Lemma 3. Given any superset I of a representative
sample D for a MTSL language L with canonical
grammar G = ¬⟨f0, T0⟩∧¬⟨f1, T1⟩∧ ...∧¬⟨fi, Ti⟩,
MTSL-BUFIA will return a grammar G′ = G.

Proof. Consider the set B of all the 2-factors which
are banned on any tier in G. Since I contains
only valid structures in L, these 2-factors must
all be absent from I . By definition of a repre-
sentative sample, all other possible 2-factors over
Σ must be present in D, and therefore also in I .
B is therefore equivalent to the set which will
be iterated over in the outer loop. Each f ′i ∈ B
must therefore be associated to one or more pairs
⟨f ′i , T1⟩, ⟨f ′i , T2⟩...⟨f ′i , Tk⟩ ∈ G. First, we show
that every constraint in G′ is in G. Suppose G′ con-
tains a forbidding tier for some f ′i , ⟨f ′i , T ′

i ⟩ which
is not one of those in G. It must then be the case
that each intervener set for f ′i , contains at least one
element from T ′

i , otherwise this pair would not get
added to the grammar. Because D ⊂ I , the set of
intervener sets for f ′i , S must contain all intervener
sets for f ′i which are present in D. By requirement
3 for representative samples, it must then be the
case that there is some constraint ¬⟨fj , Tj⟩ ∈ G
such that Tj ⊂ T ′

i . Since the queue (Q) grows
breadth-first, the algorithm will consider Tj as a
forbidding tier for f ′i before it considers T ′

i . Since
¬⟨f ′i , Tj⟩ holds on all the data, each intervener set
in I for fi must contain at least one element of Tj .
Therefore, the algorithm will add ¬⟨f ′i , Tj⟩ to the
grammar, and when it considers T ′

i this tier will
be discounted since Tj ⊂ T ′

i is already present as
a forbidding tier for f ′i . Therefore, G′ cannot con-
tain any forbidding tiers for any f ′i which are not
contained in G.

Next, we show that every constraint in G is in
G′. Suppose G contains a forbidding tier for fi,
⟨fi, Ti⟩ which is not contained in G′. In order for
Ti to not be added to G′ in the inner loop, it must
be the case that either a forbidding tier ⟨fi, Tj⟩ is
already in G′, where Tj ⊂ Ti, or there is some
intervener set V which contains no elements of Ti.
As established above, the only constraints which
will be added to G′ are those which are also present
in G. Therefore, ⟨fi, Tj⟩ ∈ G′Ô⇒



fi, Tj ∈ G. However, if G were to contain
⟨fi, Tj⟩ and ⟨fi, Ti⟩, where Tj ⊂ Ti it would not
be a canonical grammar by the definition in Sec-
tion 4. Since ⟨fi, Ti⟩ ∈ G, and I consists of only
positive data generated by G, there can be no such
intervener set V such that V ∩ Ti = ∅, since this
would mean fi was in fact present on the tier Ti,
thereby directly violating the constraint. Therefore,
Ti will be added to G′ during the inner loop, and G
cannot contain any constraints not contained in G′.

Since G ⊂ G′ and G′ ⊂ G, the two are equal:
G′ = G.

Theorem 1. For any MTSL language L, MTSL-
BUFIA identifies the canonical grammar for L in
the limit using polynomial data.

Proof. From Lemmas 2 and 3.

7 Time complexity

In the worst case, MTSL-BUFIA runs in expo-
nential time. To see why, consider the time re-
quired for each step: The time complexity of
computing 2-paths is O(n2) for strings (Jardine
and Heinz, 2016) and O(n4) for trees (Swanson,
2024b). Then, for each missing 2-factor, the rele-
vant tier(s) must be found. There are at most ∣Σ∣2
(or 2⋅∣Σ∣2 for trees) 2-factors to consider. Any miss-
ing 2-factor could be banned only on the segmental
tier (ie T = Σ), and in this case the algorithm would
have to traverse all possible tiers to discover this,
with a time complexity of 2∣Σ∣ for each factor. This
yields a time complexity of O(∣Σ∣2 ⋅ 2∣Σ∣) The final
step of traversing the powerset of the alphabet intro-
duces exponential complexity to this algorithm, a
disadvantage against the MT2SLIA which is guar-
anteed to run in polynomial time. The utility of
BUFIA, however, does not come from its worst-
case performance but rather from its ability to turn
sparsity in the input data to its advantage. As in the
example given in Section 5, when the input data
obeys highly general constraints, BUFIA is able to
prune away large chunks of the search space along
the way, enabling it to tractably search very large
spaces under the right conditions. Indeed, BU-
FIA has been successfully implemented and used
to analyze natural-language scale data (Swanson
et al., 2025). So although MTSL-BUFIA to some
degree trades a tighter concept class for a worse
time complexity, its exponential worst-case bound
may not indicate intractability on natural language
data, which is highly marked by sparsity. In the

case of subregular syntax, many of the phenom-
ena which have been analyzed as TSL require tiers
with three or fewer symbols (ie highly restrictive),
which would play into BUFIA’s ability to prune the
search space.

8 Conclusion

This paper introduces MTSL-BUFIA, an algorithm
which exactly identifies the class of MTSL in
the limit from a polynomially-sized data sample.
This algorithm avoids the shortcoming of previous
MTSL learning algorithms which placed additional
problematic restrictions on the concept class which
could be learned. The greater expressiveness of
patterns that MTSL-BUFIA can induce comes at
the cost of a polynomial runtime guarantee, but
this does not mean the algorithm is universally in-
tractable. The BUFIA approach does best (in terms
of time complexity) with sparse data which can be
captured by more general constraints.

Future work in this area involves testing MTSL-
BUFIA on natural-language data samples, which
would not only allow exploration of its average-
case time performance (on the types of data found
in human language), but also give insight into
whether natural language typically furnishes the
requisite representative sample to learn the target
patterns.

Additionally, MTSL-BUFIA is suggestive of sev-
eral possible extensions which could be fruitful to
explore. Lambert (2021) provides a method for
online learning of TSL-k languages, and it might
be possible to adapt MTSL-BUFIA along those
same lines. While MTSL-BUFIA is limited to the
MTSL-2 languages, the concept of intervener sets
can be extended to larger k-factors, allowing for
the possibility of learning MTSL-k. With larger k
values, the set of possible 2-factor, tier pairs is itself
partially ordered and can be traversed in the same
fashion to yield a grammar with mixed sizes of
k-factors. Another useful aspect of BUFIA is that
it is well-suited to feature-based representations,
so this approach could also be easily extended to
operate over features rather than segments.

Finally, another area of future exploration is into
additional concept classes between MTSL and the
more restricted class learned by the MT2SLIA.
For example, what would it mean to enforce only
constraint-uniqueness or only tier-element indepen-
dence? Are there different restrictions on MTSL
that are more appropriate for natural language? The



work presented in this paper offers a foundation on
which to continue probing these open questions.
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