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Abstract

This paper presents an approach to learning
a subclass of phonological maps that can
be expressed with non-recursive quantifier-
free logical transductions within the frame-
work of Boolean Monadic Recursive Schemes
(BMRS). Building on previous work on phono-
logical learning with partially-ordered hypothe-
sis spaces, this paper shows that similar struc-
tures can be used in learning phonological maps
when these maps are represented by logical
transducers over unconventional string models.
A primary contribution of this paper is a demon-
stration of how the BMRS framework can be
used to learn phonological generalizations.

1 Introduction

Input Strictly Local (ISL) functions character-
ize phonological maps in which sounds undergo
change based on local information in the input
(Chandlee, 2014; Chandlee and Heinz, 2018). In
other words, every ISL function has a parameter
k such that for every x in the input string, the in-
formation needed to determine the output of x is
within some window of size k around x. Consider
the postnasal voicing map below from Zoque, in
which voiceless stops become voiced when they
are immediately preceded by a nasal (Wonderly,
1951). The input-output pair of words in Figure 1
illustrates why this map is ISL-2.

pama ‘clothing’ mbama ‘my clothing’
tatah ‘father’ ndatah ‘my father’
kama ‘cornfield’ Ngama ‘my (corn)field’
hayah ‘husband’ nhayah ‘my husband’

/ /m p a m a

[ ]m b a m a

k = 2

Figure 1: Postnasal voicing in Zoque is ISL-2.

The ISL class of functions is learnable from pos-
sible data; for every ISL function f , it is possible
to learn a finite state transducer which computes
f from a characteristic sample S ⊆ f of input-
output pairs of strings (Chandlee, 2014; Chandlee
et al., 2014). The purpose of this paper is to revisit
learning from a model-theoretic perspective, where
the goal is to learn ISL functions as logical trans-
ductions from pairs of input-output string models.
While finite state transducers traditionally oper-
ate over string representations, logical transducers
operate over more enriched representations. This
paper uses unconventional string models which rep-
resent strings with phonological features (Strother-
Garcia et al., 2016; Chandlee et al., 2019).

One of the main ideas presented in this paper is
that we can learn logical transductions from input-
output pairs of string models by using partially-
ordered hypothesis spaces. Similar spaces have
been used for various learning problems within
phonology (Rawski, 2021; Chandlee et al., 2019;
Tesar, 2013; Heinz et al., 2012; Heinz, 2010). A
common theme among them is that a partially-
ordered hypothesis space encodes entailment re-
lations that are relevant for learning. These entail-
ments allow a large space to be pruned efficiently
with a small number of data points. This paper
shows that a similar approach can be applied to the
problem of learning logical transducers. This paper
culminates with a demonstration of how a logical
transducer for postnasal voicing can be learned us-
ing a very small number of input-output pairs.

A further contributions of this work is that it is
closely related to previous work on model-theoretic
learning of phonotactic constraints from Chandlee
et al. (2019) and Rawski (2021). More specifi-
cally, this paper shows that the problem of learning
the environment that triggers a particular feature
to undergo change employs the same structure as
learning banned k-factors in a grammar. In the
case of postnasal voicing, for example, Zoque has



a phonotactic constraint *[+nas][-voi,-cont] which
says a voiceless stop cannot be immediately pre-
ceded by a nasal. This constraint also expresses the
environment where voicing takes place: if an under-
lying form violates *[+nas][-voi,-cont], the second
sound undergoes voicing in order to repair the vio-
lation. The partially-ordered hypothesis space used
to learn the surface constraint *[+nas][-voi,-cont]
can therefore be adapted to learning the environ-
ment where a voiceless sound becomes voiced. As
such, the procedure presented here is a means of
lifting phonotactic learning to learning phonologi-
cal maps via logical transductions.

A broader contribution of this paper is a demon-
stration of how this model-theoretic approach can
be used to learn phonological generalizations from
a sample of underlying and surface form pairs. To
that end, the style of this paper is mainly expository,
and the learning problem is abstract rather than
formally-defined. This paper moreover focuses on
length-preserving and order-preserving ISL func-
tions because they are a natural starting point for
motivating the larger research program of model-
theoretic phonology. The method introduced here
can be extended to more complex function classes,
as well as more complex representations.

The structure of this paper is as follows. Sec-
tion 2 provides the relevant background and defini-
tions of string models, logical transductions, sub-
factors, and partially-ordered sets (posets). Section
3 discusses previous work on phonological learning
with posets, with emphasis on the Bottom-Up Fea-
ture Inference Algorithm (BUFIA; Chandlee et al.,
2019). Section 4 presents the learning goal and
procedure, and Section 4.4 illustrates these ideas
using postnasal voicing as a case study. Future
extensions of this work are discussion in Section 5.

2 Preliminaries

Given an alphabet Σ, a string/word is a finite con-
catenation of symbols in Σ. The set of all such
strings, along with the empty string λ, is denoted
Σ∗. For eachw ∈ Σ∗, we letwi denote the ith char-
acter inw, and |w| denote the length ofw. This sec-
tion presents definitions of relational structures and
string models which are used to represent words in
Σ∗, and ultimately functions over Σ∗. These struc-
tures are then enhanced with phonological features
over which phonological maps are defined.

2.1 String Models
Definition 1. A signature is a collection of relation
symbols {Ri}i≤m, and function symbols {fi}i≤n.1

Definition 2. Given a signature S , an S-structure

M = ⟨D, {RM
i }i≤m, {fMi }i≤n⟩

consists of a domain D, a relation RM
i ⊆ Dk

for each k-ary relation symbol Ri, and a function
fM : Dk → D for every k-ary function symbol f .
Struc(S) denotes the set of S-structures.

Structures are built over a signature by specify-
ing a domain and interpretations for the relation
and functions symbols. Every word in Σ∗ is as-
sociated with a particular kind of structure called
a string model built over a signature consisting of
unary predicates {⋊,⋉, Pσ}σ∈Σ and successor and
predecessor functions. An alphabet and a signature
over that alphabet are often designated by the same
symbol; the string models built over an alphabet Σ
are called Σ-structures.

This paper looks at a specific type of string
model which we refer to here as monadic string
models, following Chandlee and Lindell (forth.).

Definition 3. For an alphabet Σ and word w ∈ Σ∗,
a monadic string model for w is a Σ-structure

M(w) := ⟨D,⋊,⋉, Pσ, s, p⟩σ∈Σ

where D = {0, . . . , |w| + 1} is a set of indices;
each Pσ : D → {⊤,⊥} is a monadic predicate s.t.
Pσ(i) = ⊤ iffwi = σ; ⋊(i) = ⊤ iff i = 0; ⋉(i) =
⊤ iff i = |w| + 1; s, p : D → D are successor
and predecessor functions over D; for each i ∈
{1, . . . , |w|}, exactly one σ is s.t. Pσ(i) = ⊤.

The predicates Pσ indicate which symbol of the
alphabet appears at an index, the symbols ⋊ and ⋉
indicate the left and right edges of the word, and
p and s capture the linear ordering of the symbols.
The monadic model for the string ‘baa’ over the
alphabet {a, b} is illustrated in Figure 2.

String models can be further enriched with other
relations/functions to represent tiers (Lambert and
Rogers, 2020; Chandlee and Jardine, 2019a; Jar-
dine, 2017), syllable structure (Strother-Garcia,
2019, 2018; Strother-Garcia et al., 2016), prosodic
structure (Dolatian, 2020), and syntactic trees
(Rogers, 2003). String models have been used

1The concept of ‘signature’ is also commonly referred to
in model theory literature as ‘vocabulary’ (e.g. Libkin, 2004)
or ‘language’ (e.g. Marker, 2002).
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⋊(x) ⊤ ⊥ ⊥ ⊥ ⊥
Pa(x) ⊥ ⊥ ⊤ ⊤ ⊥
Pb(x) ⊥ ⊤ ⊥ ⊥ ⊥
⋉(x) ⊥ ⊥ ⊥ ⊥ ⊤

⋊ b a a ⋉

Figure 2: M(baa): monadic model of the string ‘baa’.

to characterize subregular classes of phonological
grammars (Lambert and Rogers, 2020; Rogers and
Lambert, 2019; Rogers and Pullum, 2011) and to
develop inference algorithms for these grammars
(Rawski, 2021; Chandlee et al., 2019; Strother-
Garcia et al., 2016; Vu et al., 2018).

2.2 Logical Transductions

The focus of this paper is on phonological maps.
We represent the underlying and surface forms of
words with string models, and represent phono-
logical maps as relations between string models.
Consider a string function f : Σ∗ → Γ∗. For
every input string w ∈ Σ∗ and corresponding Σ-
structure M(w), there is an output string f(w)
and corresponding Γ-structure M(f(w)). We call
Σ = ⟨Pσ,⋊,⋉, p, s}σ∈Σ the input signature and
Γ = ⟨Pγ ,⋊,⋉, p, s⟩γ∈Γ the output signature, and
capture the relationship between input and out-
put string models with a map that transforms Σ-
structures into Γ-structures by means of logical
formulas. In particular, the predicates {Pγ}γ∈Γ in
the output Γ-structure are associated with logical
formulas over the predicates {Pσ}σ∈Σ in the input
Σ-structure. These maps are called logical trans-
ductions (Courcelle, 1994; Engelfriet and Hooge-
boom, 2001; Courcelle and Engelfriet, 2012). Log-
ical transductions over monadic string models are
quantifier-free (Chandlee and Jardine, 2019b, 2021;
Chandlee and Lindell, forthcoming).

As an example, consider the simple function
f expressed by the rewrite rule a → b/b , ap-
plied over the alphabet Σ = {a, b}. The logi-
cal transducer which expresses f transforms a Σ-
structure ⟨D,⋊,⋉, Pa, Pb, p, s⟩ into a Σ-structure
⟨D,⋊,⋉, P ′

a, P
′
b, p, s⟩, where P ′

a and P ′
b are ex-

pressed as logical formulas over the signature of
the input model, as in (1). The predicates Pa and
Pb express when an index in the input string model
carries an ‘a’ or ‘b’ symbol, respectively. The pred-
icates P ′

a and P ′
b express when an index in the

input ⋊ b a a ⋉
0 1 2 3 4

⋊(x) ⊤ ⊥ ⊥ ⊥ ⊥
Pa(x) ⊥ ⊥ ⊤ ⊤ ⊥
Pb(x) ⊥ ⊤ ⊥ ⊥ ⊥
⋉(x) ⊥ ⊥ ⊥ ⊥ ⊤
P ′
a(x) ⊥ ⊥ ⊥ ⊤ ⊥
P ′
b(x) ⊥ ⊤ ⊤ ⊥ ⊥

output ⋊ b b a ⋉

Figure 3: Logical transducer in ((1)) over M(baa).

output string model carries an ‘a’ or ‘b’. Since f is
a length-preserving function, the input and output
models have the same domain, linear ordering, and
boundary predicates ⋊ and ⋉.

(1) Logical transducer which expresses a→ b/b
P ′
a(x) = Pa(x) ∧ ¬Pb(p(x))
P ′
b(x) = Pb(x) ∨

(
Pa(x) ∧ Pb(p(x)))

The equation for P ′
a(x) in (1) expresses the fol-

lowing: the index x will carry an ‘a’ in the output
model iff it carries an ‘a’ in the input model, and
the index preceding it does not carry a ‘b’ in the
input model. Stated more simply, x will output as
an ‘a’ iff it is an ‘a’ that is not preceded by a ‘b’
in the input. Similarly, P ′

b(x) says: x will carry
a ‘b’ in the output iff it is either a ‘b’ in the input,
or it is an ‘a’ that is preceded by a ‘b’. The string
transformation baa 7→ bba is presented in Figure 3.
In the input model M(baa), the logical formula for
P ′
a(2) evaluates to ⊥ and the logical formula for
P ′
b(2) evaluates to ⊤. These facts together capture

the following relationship between the input and
output models: the ‘a’ at index 2 of the input model
becomes a ‘b’ in the output model.

More recent work within model-theoretic
phonology uses the framework of Boolean
Monadic Recursive Schemes (BMRS) to repre-
sent string functions. Logical transductions over
monadic string models within the BMRS frame-
work have been used to represent phonological
maps (Chandlee and Jardine, 2021; Jardine and
Oakden, 2023), model process interaction (Oak-
den, 2021), and provide logical characterizations
of the expressivity of phonological maps (Bhaskar
et al., 2020, 2023; Yolyan, 2025; Chandlee and
Lindell, forthcoming). This framework expresses
the predicates in the output signature using an
if...then...else syntax; logical transductions
within the BMRS framework are referred to as pro-



grams. The logical transducer in (1) can equiva-
lently be expressed as the BMRS program in (2).

(2) Logical transducer with BMRS syntax
P ′
a(x) = if Pb(px) then ⊥ else Pa(x)
P ′
b(x) = if Pa(x) then Pb(px) else Pb(x)

The equation for P ′
b(x) in (2) expresses the fol-

lowing: if x is an ‘a’ in the input, then it will
output as ‘b’ iff it is preceded by a ‘b’; other-
wise, it will output as an ‘b’ iff it is a ‘b’ in the
input. Chandlee and Jardine (2021) discuss how
the if...then...else syntax of BMRS can be
used to represent meaningful phonological general-
izations such as licensing/blocking structures and
elsewhere conditions. Section 4.1 of this paper
discusses how this syntax is also valuable for ex-
pressing the generalizations involved in learning
phonological maps. Thus, while these logical trans-
ductions can be expressed using propositional logic
operators, the syntax of BMRS programs is useful
for refining the learning problem.

2.3 Feature Models

The string models discussed so far have the require-
ment that the predicates {⋊,⋉, Pσ}σ∈Σ partition
the domain. Phonological maps, however, target
particular features or bundles of features (Jakob-
son et al., 1952; Clements and Hume, 1995). In
order to model phonological words and maps, we
use unconventional string models (Strother-Garcia
et al., 2016), in which more than one predicate
can hold at each index.2 In the case where the
predicates represent phonological features, we will
refer to these unconventional string models as ‘fea-
ture models’. In this case, the monadic predicates
range over an alphabet of phonological features
F, rather than an alphabet of characters. For sim-
plicity, we use the same notation for each feature
F ∈ F as the associated monadic predicate. That is,
F (x) = ⊤ means the sound at index x of the model
has feature [+F] and F (x) = ⊥ means it has fea-
ture [-F].3 Moreover, because the requirement that
only one predicate hold at each index is dropped
for feature models, the predicates INITIAL/FINAL

or MIN/MAX can be used in place of the bound-
ary symbols ⋊/⋉. For simplicity of demonstra-
tion, we consider here the limited collection of
sounds /p,b,t,d,a,h/ over the four binary phonologi-

2String models in which exactly one predicate holds at
each index are referred to as ‘conventional models’ in previ-
ous research because that is the convention used in computer
science literature (e.g. Buchi, 1960).

cal features [sonorant], [coronal], [continuant], and
[voice]. Each of these sounds corresponds with a
unique combination of these four feature specifica-
tions, given in Figure 4. The sound /d/ for example,
has the specification [−son, +cor, −cont, +voi].
Moreover, because postnasal voicing does not dis-
tinguish between nasal sounds, the feature [nasal]
will be used to identify any nasal sound.

p b t d a h N
[son] − − − − + − +
[cor] − − + + − −
[voi] − + − + + − +
[cont] − − − − + + −
[nas] − − − − − − +

Figure 4: Limited inventory of sounds and features

A logical transducer over feature models spec-
ifies output predicates F ′(x) for every feature
F ∈ F. The logical transducer which expresses
the postnasal voicing map in Zoque is given in (3).
A sample transduction of /mpama/→[mbama] ‘my
clothing’ is presented in Figure 5. In order to repre-
sent feature models more compactly, we use feature
matrices. The input feature model for /mpama/ in
Figure 5, for example, can be represented with the
shorthand notation in (4) which encodes exactly
the same information as the input model.

(3) Logical transducer for Zoque postnasal voicing
[voi]′(x) = [voi](x) ∨

(¬[cont](x) ∧ [nas](px))
F ′(x) = F (x) for all other F ∈ F

3This convention is not the only way to model phonologi-
cal maps within this framework. We may instead allow F to
contain both [+F ] and [−F ] as predicates. Moreover, Chan-
dlee and Jardine (2021, pg.42) show that feature models can
be adapted for non-binary feature systems as well. Further dis-
cussion of feature systems from a model-theoretic perspective
can also be found in Nelson (2022).

input m p a m a
0 1 2 3 4

Initial(x) ⊤ ⊥ ⊥ ⊥ ⊥
[son](x) ⊤ ⊥ ⊤ ⊤ ⊤
[cor](x) ⊥ ⊥ ⊥ ⊥ ⊥
[voi](x) ⊤ ⊥ ⊤ ⊤ ⊤
[cont](x) ⊥ ⊥ ⊤ ⊥ ⊤
[nas](x) ⊤ ⊥ ⊥ ⊤ ⊥
Final(x) ⊥ ⊥ ⊥ ⊥ ⊤
[voi]′(x) ⊤ ⊤ ⊤ ⊤ ⊥
output m b a m a

Figure 5: Logical transducer in (3) over M(mpama)



(4) Shorthand notation for M(mpama)
+son
−cor
+voi
−cont
+nas



−son
−cor
−voi
−cont
−nas



+son
−cor
+voi
+cont
−nas



+son
−cor
+voi
−cont
+nas



+son
−cor
+voi
+cont
−nas


2.4 Subfactors

The substructures which are relevant to this paper
are subfactors of monadic feature models. This
section does not delve into formal definitions of
subfactors in general; discussions and definitions
of subfactors can be found in Rogers and Lam-
bert (2019); Rawski (2021); Chandlee et al. (2019);
Strother-Garcia et al. (2016). The relevant result
is that subfactors of monadic string models corre-
sponds with substring models. The substrings of
w ∈ Σ∗ are the strings v ∈ Σ∗ for which there exist
x, y ∈ Σ∗ such that w = xvy. For example, the
substrings of ‘bac’ are {λ, b, a, c, ba, ac, bac}. The
subfactors of M(w) are the models M(v) such
that v is a substring of w.

The subfactors of unconventional string models,
however, are more complex than substring models
because any number of predicates can be true at
each index. Figure 6 presents the subfactors of a
feature model with a domain that has cardinality
1. The feature [coronal] is left out of this figure in
order to keep the space manageable. An example
of a subfactor of [-nas,-son,-cont,-voi] is a model
with no specification for [voice]: [-nas,-son,-cont].
These structures no longer represents a particular
sound, but instead collections of sounds. The sub-
factor [-nas,-son,-cont] corresponds with the set of
sounds {/p/, /b/, /t/, /d/}. Although the space of
subfactors for feature models is very large, they
allow for a formal representation of relevant lin-
guistic generalizations because each subfactor in
Figure 6 represents a natural class.

For any model M, the set of subfactors is de-
noted Subfact(M). A subfactor is called a k-
factor if the domain has cardinality k. The set of
k-factors of M is denoted Subfactk(M). The
subfactor relation between models is denoted ⊑.

2.5 Partially-Ordered Sets

A structure (X,≤) is a partially-ordered set (poset)
iff ≤ is reflexive, antisymmetric, and transitive.
Figure 6 is an example of a poset. Chandlee et al.
(2019) show that this is true in general; for a model
M, the structure (Subfact(M),⊑) is a poset.

Two types of posets which are particularly rel-
evant for the discussion of learning in this paper

 -nas
-son
-cont
-voi


 -nas

-son
-cont

 -nas
-son
-voi

 -nas
-son
-voi

  -son
-cont
-voi


[

-nas
-son

] [
-nas
-cont

] [
-nas
-voi

] [
-son
-cont

] [
-son
-voi

] [
-cont
-voi

]

[-cont] [-voi][-son][-nas]

[ ]

Figure 6: Poset of subfactors for feature models.

are filters and ideals, defined in Definitions 4 and
5, respectively. For every x ∈ X of a poset, the
subset of objects above x forms a filter, and the set
of objects below x forms an ideal. The remainder
of this paper shows how filters and ideals are used
to generate and prune a hypothesis space.

Definition 4 (Filters). For a poset (X,≤), a filter
is a non-empty set F ⊆ X such that:
(a) for every x ∈ F , if x ≤ y then y ∈ F
(b) for every x, y ∈ F , there is some z ∈ F such

that z ≤ x and z ≤ y

The principle filter generated by x ∈ X is the set

↑ x := {y ∈ X|x ≤ y}

Definition 5 (Ideals). For a poset (X,≤), an ideal
is a non-empty set I ⊆ X such that:
(a) for every x ∈ I , if y ≤ x then y ∈ I
(b) for every x, y ∈ I , there is some z ∈ I such

that x ≤ z and y ≤ z

The principle ideal generated by x ∈ X is the set

↓ x := {y ∈ X|y ≤ x}

Posets have been used as a hypothesis space
for various learning problems within phonology
(Rawski, 2021; Chandlee et al., 2019; Tesar, 2013;
Heinz et al., 2012; Heinz, 2010). A partially-
ordered hypothesis space encodes entailment re-
lations that are relevant for learning, which allow
a large space to be pruned efficiently with a small
number of data points. The next section presents
two such examples to highlight this point.



3 Phonological Learning with
Partially-Ordered Structures

Tesar (2013) uses a stress-length system to illus-
trate a learning algorithm for underlying forms
with a partially-ordered hypothesis space.4 In this
system every vowel in a word can be stressed or
unstressed, and long or short. Consider the sur-
face form [paká:], where the second vowel is both
stressed and long. The space of possible underly-
ing forms of [paká] is a poset under the relative
similarity relation, defined as follows: x ≤ y iff
y is more similar to [paká:] than x. This poset
encodes entailment relations relevant to learning.
If the map /paká/→[paká:] leads to inconsistency,
then /paká/ is not a possible underlying form. This
information entails that anything less similar to
[paká:] than /paká/ will lead to inconsistency (in
an output-driven map). Thus, being inconsistent is
downward entailing, as illustrated in Figure 7 with
the candidates marked ✗.

Although the poset contains 16 possible candi-
dates for the underlying form of [paká:] (Figure
8), downward entailment of inconsistency allows
the space to be pruned efficiently. If the learner
determines that /paká/ cannot be the underlying
form, the entire substructure highlighted in gray
(i.e. the principle ideal ↓ /paká/) in Figure 8 can
be removed from the hypothesis space. As Tesar
(2013) explains, the benefit of the structured hy-
pothesis space is computational efficiency:

[...]the possible optimality of a node
entails upward, while the definite non-
optimality of a node entails downward.
This makes it possible to draw conclu-
sions about whole sublattices of candi-
dates based on the evaluation of only a
single candidate. [...] This converts ex-
ponential search into linear search: the
number of possible underlying forms is
exponential in the number of features,
but the number of forms to actually be

/paká:/ ✓

✓ /paka:/ /paká/ ✗

✗ /paka/

Figure 7: Entailments for learning underlying forms

paká:

páká: pa:ká paka: paká

pá:ká: páka: pa:ka: páká pa:ká paka

pá:ka: pá:ká páka pa:ka

pá:ka

Figure 8: Removing ↓ /paká/ from hypothesis space.

tested is linear in the number of features.
(Tesar, 2013, pg.287-289)

Similar observations are made by Chandlee et al.
(2019) for the problem of learning phonotactic
grammars. In this case, subfactors form a poset
of potential banned structures in a grammar. Un-
grammaticality is upward entailing; if a structure
is ungrammatical, then all its superfactors must be
ungrammatical. For example, if [+nas][-voi,-cont]
is an ungramamtical surface form (as in the case of
Zoque), then [+nas][-nas,-voi,-cont] must also be
ungrammatical. On the other hand, grammaticality
is downward entailing; if a structure is grammati-
cal, then all its subfactors must also be grammatical.
These entailments are illustrated in Figure 9, where
ungrammatical structures are represented by ✗ and
grammatical structures are represented by ✓.

Similar to the previous example, these entail-
ments are used to prune the hypothesis space. In
this case, if a structure is ungrammatical, all the
structures above it (i.e. the principle filter) will be
removed from the hypothesis space. This process
is discussed in the next section.

4This work is specifically for output-driven maps, which
are outside the scope of this paper.

[+nas]

 -nas
-voi
-cont

 ✓

✗ [+nas]
[

-voi
-cont

]
[+nas]

[
-nas
-voi

]
✓

✗ [+nas][-voi]

Figure 9: Entailments for learning grammars



3.1 Bottom-Up Feature Inference Algorithm
(BUFIA)

The learning algorithm introduced by Chandlee
et al. (2019) is called the Bottom-Up Factor Infer-
ence Algorithm (BUFIA). The goal of BUFIA is
to learn the banned k-factors of a language from
a positive sample (i.e. collection of grammatical
words from the language). BUFIA runs as follows.
There is a finite sample S containing words from a
language. The goal is to learn the grammar of the
language, which is represented as a set of k-factors
which are not permitted in the language. Because
there are many ways to express the ungrammatical
k-factors, a further goal is to find the most general
description. For this reason, the algorithm searches
through the hypothesis space bottom-up. If some
k-factor x in the space is not found in any surface
form in S, then it is added to the set of constraints.
Because ungrammaticality is upward entailing, all
of x’s superfactors must also be ungrammatical.
Thus, the entire filter ↑ x is removed from the hy-
pothesis space since the grammaticality of these
structures no longer needs to be considered. In this
way, only the minimal (most general) ungrammati-
cal k-factors are part of the resulting grammar.

BUFIA is illustrated here with the example of
postnasal voicing in Zoque. For brevity, the fea-
tures [sonorant] and [coronal] are left out of the dis-
cussion because they are ultimately not necessary
to identify the minimal ungrammatical 2-factor in
Zoque.5 The surface forms from Section 1 pro-
vide evidence that all the subfactors of [+nas][-voi,-
cont] are grammatical. These subfactors are pre-
sented in Figure 10 with N, V, and C for the features
[nasal], [voi], and [cont], respectively. The form
[tatah] ‘father’ provides evidence that [][-voi,-cont]
is a grammatical structure. The form [nhayah]
‘my husband’ provides evidence that [+nas][-voi]
is grammatical. The form [ndatah] ‘my father’ pro-
vides evidence that [+nas][-cont] is grammatical.
Moreover, all the subfactors of these three 2-factors
are grammatical. The 2-factor [+nas][-voi,-cont] is
the minimal structure in the poset that is not found
in any surface form of Zoque; all the structures
below it are grammatical, while all the structures
above it ungrammatical.

5The [-voi,-son] /h/ in [nhayah] ‘my husband’ does not
have a voiced counterpart in Zoque, and therefore does not
become voiced after a nasal (Wonderly, 1951). Thus, [nhayah]
provides evidence that [+nas][-voi,-son] (and every subfactor
of it) is grammatical. The feature [cont] is therefore neces-
sary to distinguish the sounds which can be preceded by a

U
ng

ra
m

m
at

ic
al

+N
+V
-C

-N
-V
-C


 N

+V
-C

[-V
-C

] [
+N
-C

]-N
-V
-C

 [
+N
+V

]-N
-V
-C



[
+N
-C

][
-V
-C

] [
+N
+V

][
-V
-C

]
[+N]

-N
-V
-C



[+N]
[

-V
-C

]

G
ra

m
m

at
ic

al

[ ]
[

-V
-C

]
[+N][-V] [+N][-C]

[ ][-V] [ ][-C] [+N][ ]

[ ]

Figure 10: Minimal ungrammatical structure in Zoque.

These data points are revisited in the next section
to show how the same structures and principles can
be used to learn the postnasal voicing map. Further
discussion of BUFIA and abduction principles used
in learning can be found in Rawski (2021). Recent
applications of BUFIA can also be found in Li
(2025) and Payne (2024).

As a final note, the learning problem for BUFIA
(Def. 9 of Chandlee et al., 2019) is not stated in
terms of finding the correct grammar in the limit,
as in Gold (1967), but instead finding the most
general grammar that is consistent with the sample
of surface forms. The goal of learning phonological
maps is similar: generate a logical transducer that
expresses the most general phonological map that
is consistent with the sample of input-output pairs.
A formal statement of the learning problem in this
paper is left for future work.

nasal from the sounds which cannot. Moreover, since the
ungrammaticality of [+nas][-voi,-cont] entails the ungram-
maticality of both [+nas][-voi,-son,-cont] and [+nas][-voi,-
cor,-cont], [son] and [cor] are not necessary to represent the
ungrammatical structures in Zoque because a more general
subfactor suffices.



4 Learning Logical Transducers

Chandlee and Lindell (forthcoming) show that non-
recursive quantifier-free logical transductions over
monadic models are the logical characterization
of finite-to-one ISL functions. A string function
f : Σ∗ → Γ∗ is finite-to-one iff for every w ∈ Γ∗,
the set {u ∈ Σ∗|f(u) = w} is finite. In other
words, every surface form has finitely many un-
derlying forms that map to it under the applica-
tion of f . The output of the learning procedure
introduced here is a quantifier-free BMRS program.
This means we assume that we are always learn-
ing finite-to-one phonological maps. We moreover
restrict the maps we consider to those that order-
preserving and length-preserving. That is, epenthe-
sis, deletion, and metathesis are not considered
here. Future extensions to non-length-preserving
maps are discussed in Section 5.

The examples from Tesar (2013) and Chandlee
et al. (2019) illustrate how two very different learn-
ing goals can be pursued with partially-ordered
hypothesis spaces, where entailment relations en-
coded in the structure make it possible for the
learner to remove large substructures with a single
data point. The remainder of this paper shows that
the same observation holds of the problem of learn-
ing environments where features undergo change,
and ultimately logical transducers which express
a phonological map. The main idea expressed in
this section is that learning a phonological map
amounts to learning several phonotactic grammars
simultaneously. In that sense, the learning proce-
dure here is a way of lifting the ideas in Chandlee
et al. (2019) to maps. This idea is formalized with
the normal form for logical transducers proposed
in Definition 6 and the main result in Theorem 7.

4.1 Normal Form for Logical Transductions
Consider a signature S = {P1, . . . Pn, s, p}, where
each Pi is a unary predicate. A term over this signa-
ture is recursively defined as follows: a variable is
a term; for every term T , p(T ) and s(T ) are terms.
The atoms over this signature are defined as

atoms(S) := {Pi(T ) |T is a term}

Definition 6. Let {P ′
σ}σ∈Σ be a collection of for-

mulas defined over an input signature Σ. Each P ′
σ

is in normal form if it is expressed as

P ′
σ(x) = if Pσ(x) then ¬ϕσ(x) else ψσ(x)

where ϕσ(x) andψσ(x) are either ⊤, ⊥, or disjunc-
tive normal form expressions over Atoms(Σ).6

Although normal form programs use the
if...then...else syntax, the ‘then’ and ‘else’
parts of the equations are expressed with proposi-
tional operators.7 This brings into question why we
would bother using the if...then...else syntax
at all. The reason for this representations is that
the syntax compartmentalizes each equation in a
program into two components: the ‘then’ expres-
sion and the ‘else’ expression. We consider first
two examples which illustrate the information the
‘then’ and ‘else’ parts of these equations encode.

The normal form of the program in (2) is pre-
sented in (5). Recall that this program expresses
the same function as the rewrite rule a → b/b .
The four pieces of information contained within
this normal form program are presented in (6). The
expression ϕa(x) is a logical description of the en-
vironment where an ‘a’ input becomes a non-‘a’
output. ψb(x) is a logical description of the en-
vironment where a non-‘b’ input becomes a ‘b’
output. Similarly, ψa(x) = ⊥ and ϕb(x) = ⊥ en-
code the facts that an non-‘a’ input never becomes
an ‘a’, and a ‘b’ input never becomes a non-‘b’,
respectively. The normal form in (5) rearranges the
atoms of (2) into a syntactic form that explicitly
references environments where change takes place.

(5) Logical transducer from (2) in normal form
P ∗
a (x) = if Pa(x) then ¬ Pb(px) else ⊥
P ∗
b (x) = if Pb(x) then ¬⊥

else
(
Pa(x) ∧ Pb(px)

)
(6) Information encoded in the normal form in (5)

ϕa(x) = Pb(px) ψa(x) = ⊥
ϕb(x) = ⊥ ψb(x) = Pa(x) ∧ Pb(px)

A similar translation can be done for the postnasal
voicing transducer in (3), presented in (7). The
highlighted expression [nas](px) ∧ ¬[cont](x) is
a logical description of the environment in which a
[-voi] sound in the input model becomes [+voi] in
the output (i.e. ψ[voi](x)).

(7) Logical transducer from (3) in normal form
[voi]∗(x) = if [voi](x) then ¬⊥

else ([nas](px) ∧ ¬[cont](x))
F ∗(x) = if F (x) then ¬⊥ else ⊥

6We assume that the input and output alphabets are the
same. This means that we assume the underlying and surface
forms have the same feature inventory. This assumption is not
necessary, and is only used for simplicity.

7Every propositional operator can be expressed using
if...then...else. For example, p∨q = if p then ⊤ else q.



The intuition for the normal form in Definition
6 is that every string function can be uniquely-
identified with {ϕσ, ψσ}σ∈Σ, which encode infor-
mation about the changes the function induces, and
the environments those changes take place. With
respect to learning, the significance of the normal
form is that it refines the learning problem in the fol-
lowing way: in order to learn a program {P ′

σ}σ∈Σ,
it is sufficient to learn {ϕσ, ψσ}σ∈Σ. This fact is
the immediate result of Theorem 7.

Theorem 7. Every program {P ′
σ}σ∈Σ over an in-

put signature Σ = ⟨Pσ, s, p⟩σ∈Σ is logically equiv-
alent to a program {P ∗

σ}σ∈Σ where each P ∗
σ is in

normal form.

The proof of Theorem 7 is presented in the ap-
pendix. The main idea is that for any output predi-
cate P ′

σ , there is a systematic way to construct an
equivalent normal form predicate P ∗

σ by generating
a truth table of all the atoms in the definition of P ′

σ ,
and determining ϕσ and ψσ from that truth table.

For phonological maps, learning a program over
feature models amounts to learning {ϕF , ψF }F∈F,
where ϕF (ψF ) expresses the environment where a
[+F] ([-F]) sound in the underlying form becomes
[-F] ([+F]) in the surface form. In this way, learn-
ing programs in this normal form amount to learn-
ing phonological generalizations regarding envi-
ronments where features undergo change. The ob-
servation that connects this learning goal to the
examples presented in Section 3 is that the space
of possible expressions for ϕF and ψF can also be
modeled as a poset, with relevant entailment rela-
tions that allow the space to be pruned efficiently.

Consider the case of postnasal voicing and the
goal of learning the environment where a [-voice]
input becomes [+voice] (ψ[voi]). A similar diagram
to Figures 7 and 9 is presented in Figure 11 for
the goal of learning the environment where voic-
ing takes place. Environments where voicing takes
place are upward entailing, while environments
where voicing does not take place are downward

[nas](px) ∧ ¬[cont](x) ∧ ¬[son](x) ✓

✗ [nas](px) ∧ ¬[son](x) [nas](px) ∧ ¬[cont](x) ✓

[nas](px) ✗

Figure 11: Entailments for learning environments

entailing. For example, if being a [-cont] that is
immediately preceded by a [+nas] is sufficient to
trigger voicing, then being a [-cont,-son] that is
immediately preceded by a [+nas] is also sufficient.
If an input-output pair indicates that some envi-
ronment does not trigger voicing, then its entire
principle ideal can be removed from the hypothesis
space, similar to the example of learning underly-
ing forms in Figure 8.

Each logical expression in Figure 11 corresponds
with a description of a 2-factor. The expression
[nas](px)∧¬[cont](x), for example, describes the
2-factor [+nas][-cont]. The subfactors which are
used to learn grammars in BUFIA can therefore
be adapted to learning environments. The distinc-
tion is that when we are learning maps rather than
surface constraints, some index of the subfactor
is the target of the map. Every k-factor we con-
sider will therefore have an extra predicate target
which identifies the unique index of the structure
that is the target of the feature change in question.
Figure 12 presents the 2-factor [+nas][-voi,-cont]
with an additional predicate target which picks
out the index that the voicing process targets. As
a shorthand, we underline the subfactor that is the
target of the map, as (8).

i j

s

p

[nas](x) ⊤
[voi](x) ⊥
[cont](x) ⊥
target(x) ⊥ ⊤

Figure 12: 2-factor targeted by postnasal voicing

(8) Shorthand notation for 2-factor in Figure 12

[+nas]

[
−cont
−son

]
4.2 Variables and Initialization
In the case of learning grammars, there is a single
hypothesis space consisting of all the possible sub-
factors. In the case of learning maps, there are sev-
eral hypothesis spaces: one for each of the learning
targets {ϕF , ψF }F∈F. Thus, learning a program
can be viewed as learning several grammars simul-
taneously. This section shows how principle ideals
are used to construct each of the hypothesis spaces.

For every X ∈ {ϕF , ψF }F∈F we need two sets



of k-factors: V (X) and V̂ (X). V (X) contains
the relevant k-factors in which the targeted change
takes place. V (ϕF ), for example, contains all the k-
factors in which an index x is such that F (x) = ⊤
in the input model but F ′(x) = ⊥ in the output
model. V̂ (ϕF ) contains all the k-factors in which
an index x is such that F (x) = ⊤ in the input
model and F ′(x) = ⊤ in the output model. In
other words, V (ϕF ) contains all the k-factors in
which a [+F] sound becomes [-F], and V̂ (ϕF ) con-
tains all the k-factors in which [+F] sounds do not
undergo change. In this way, the collections V and
V̂ encode positive and negative evidence for the
environments where features undergo change. The
hypothesis spaces are then defined in Definition 8.

Definition 8. For every X ∈ {ϕF , ψF }F∈F, the
corresponding hypothesis space is the set

H(X) :=
⋃

x∈V (X)

↓ x−
⋃

x∈V̂ (X)

↓ x

subject to the following two restrictions:

(i) Every M ∈ H(X) has exactly one index i in
the domain of M such that target(i) = ⊤.

(ii) If X is ϕF for some F ∈ F, then for every
M ∈ H(X), F (i) = ⊤ must hold for the
unique i such that target(i) = ⊤. If X is
ψF , then F (i) = ⊥ must hold.

The posets defined in Definitions 8 takes all
the k-factors in which the relevant change was ob-
served in some pair of input-output models, and re-
moves the subfactors in which the relevant change
was not observed. The restrictions in (i) and (ii)
then ensure that only the subfactors which represent
relevant environments are included in the space.
The restriction in (i) ensures that every structure
in the hypothesis space represents an environment.
The restriction in (ii) ensures that the hypothesis
space includes only the relevant environments. If
the goal is to learn the environment where a [-voi]
sound becomes [+voi], then the hypothesis space
should only include environments where the target
of the change is [-voi]. This means that H(ψ[voi])
will only include k-factors where the unique in-
dex that satisfies the predicate target is such that
[voi](x) = ⊥.

The learning procedure starts with an initial hy-
pothesis, and generates a new hypothesis with each
input-output pair of models. Before any data have
been observed, V (X) and V̂ (X) are empty for

each X ∈ {ϕF , ψF }. This means that the initial
hypothesis space for each X will also be empty by
definition. Consequently the set of minimal ele-
ments, will be empty. In this case, the correspond-
ing logical formula for X must be ⊥. The initial
variables, hypothesis, and corresponding BMRS
program are summarized in (9). The consequence
of V and V̂ being empty is that the initial (null)
hypothesis corresponds with a BMRS program that
represents the identity map.

(9) Initial Variables and Hypothesis
Variables; for all X ∈ {ϕF , ψF }F∈F

V (X) = ∅
V̂ (X) = ∅

min(H(X)) = ∅
Individual learning goals
{ϕF (x) = ⊥; ψF (x) = ⊥}F∈F

Initial Hypothesis as a BMRS program
{F ′(x) = if F (x) then ¬⊥ else ⊥}F∈F

≡ {F ′(x) = F (x)}F∈F

4.3 Updating the Hypothesis

When an input-output pair provides evidence for
a feature change, the corresponding hypothesis
space is updated. For example, if a pair of models
(M,M′) is such that some index x is [-F] in the
input model but [+F] in the output model, the set
V (ψF ) will be updated with the k-factor(s) of M
which contain x as the target. If, on the other hand,
some index x is [-F] in the input and remains [-F] in
the output, the set V̂ (ψF ) will be updated with the
relevant k-factors. Each time V or V̂ is updated,
the set of minimal elements must also be updated.
Thus, there are two possible types of updates.

Consider first the case in which a k-factor x is
added to V (X) for some X . In this case, the hy-
pothesis space H(X) grows, and potentially the set
of minimal elements grow. This means that when a
new k-factor x is added to V (X), the update func-
tion maintain all previous minimal elements and
only determines whether to add new ones. The pro-
cedure for determining which elements to add to
M(X) is as follows: we traverse the structure ↓ x
bottom-up in order to find the minimal subfactors
of x which are neither subfactors of any current
minimal elements, nor subfactors of any k-factor in
V̂ (X). Because both k and the number of features
we consider are fixed, the structure ↓ x is always
of fixed size. Moreover, we only need to know
the set of factors in M(X) and V̂ (X) in order to
determine the new set of minimal elements.



In the case where a new k-factor x is added to
V̂ (X), the update function must remove any ele-
mentm ∈M(X) such thatm ⊑ x, and potentially
add new minimal elements. In this case, there are
two possibilities: if x ∈ V (X), then m is removed
from the set of minimal elements; otherwise m is
replaced by new minimal elements that are imme-
diately above m in the poset. In this case, we only
need information about V (X) and M(X) in order
to update the set of minimal elements.

Both types of updates therefore amount to
traversing a restricted space in order to find new
minimal elements. Although the hypothesis space
can get very large, for each X ∈ {ϕF , ψF }, only
the sets M(X), V (X), and V̂ (X) need to be main-
tained in memory in order to update the hypothesis.
The next section illustrates the update process with
the example of postnasal voicing.

4.4 Case Study: Postnasal Voicing in Zoque

Consider first the input-output pair of models in
Figure 5 representing /mpama/ → [mbama]. The
input-output models for this transformation were
presented in Figure 5. The sound at index 1 is [-voi]
in the input model and [+voi] in the output model.
This means that the set V (ψ[voi]) must be updated
with the 2-factors that contain the sound at index
1 as a target. There are two possible 2-factors in
the input model which contain the sound at index
1. These are presented in Figure 13. The updated
hypothesis space is presented in Figure 14. The
corresponding updates are summarized in (10).

m p
[nas](x) ⊤ ⊥
[voi](x) ⊤ ⊥

[cont](x) ⊥ ⊥
target(x) ⊥ ⊤

p a
[nas](x) ⊥ ⊥
[voi](x) ⊥ ⊤

[cont](x) ⊥ ⊤
target(x) ⊤ ⊥

Figure 13: 2-factors added to V (ψ[voi])
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Figure 14: H(ψ[voi]) given (/mpama/, [mbama]).

Since being [-voi] is presumed to be true when
learning ψ[voi] (by restriction (ii) of Definition 8),
the minimal element is [-V] rather than ∅. This el-
ement corresponds with ψ[voi](x) = ⊤. We could
also set ψ[voi] = ¬[voi](x); this would give a logi-
cally equivalent program and corresponding map,
but with unnecessary redundancy. The new hy-
pothesis therefore says that a [-voi] sound always
becomes [+voi]. This hypothesis corresponds with
the most general hypothesis that accounts for the
input-output sample observed.

(10) Hypothesis update given /mpama/→[mbama]
min(H(ψ[voi])) = {[−V ]}
ψ[voi](x) = ⊤

as a BMRS program
[voi]∗(x) = if [voi](x) then ¬⊥ else ⊤

as a phonological map
[−voi] → [+voi]

We consider next the case where the underlying and
surface forms are the same. Consider the surface
form [tatah] ‘father’. The hypothesis in (10) pre-
dicts that we should not see this surface form; we
would instead expect to see [dadah]. This surface
form therefore provides evidence that the the previ-
ous hypothesis is incorrect. In this case, the pair of
2-factors in Figure 15 are added to V̂ (ψ[voi]). The
updated hypothesis space is presented in Figure 16.
The corresponding updates are summarized in (11)

a t
[nas](x) ⊥ ⊥
[voi](x) ⊤ ⊥

[cont](x) ⊤ ⊥
target(x) ⊥ ⊤

t a
[nas](x) ⊥ ⊥
[voi](x) ⊥ ⊤

[cont](x) ⊥ ⊤
target(x) ⊤ ⊥

Figure 15: 2-factors added to V̂ (ψ[voi])
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Figure 16: Updated H(ψ[voi]) given (/tatah/, [tatah]).
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Figure 17: Updated H(ψ[voi]) given /nhayah/→[nhayah] and /kuPtpa/→[kuPtpa].

The hypothesis space has two minimal elements:
[+N][-V] and [−C][−V ]. The resulting hypothesis
is therefore a disjunction. The new hypothesis says
that a [-voi] sound becomes [+voi] if it is either
preceded by a [+nas] or by a [-cont] sound. The
remaining updates with /nhayah/→[nhayah] and
/kuPtpa/→[kuPtpa] are presented in Figure 17.

(11) Hypothesis update given /tatah/→[tatah]
min(H(ψ[voi])) = {[+N ][−V ], [−C][−V ]}
ψ[voi](x) = [nas](px) ∨ ¬[cont](px)

as a BMRS program
[voi]∗(x) = if [voi](x) then ¬⊥

else [nas](px) ∨ ¬[cont](px)

as a phonological map

[−voi] → [+voi]/

{
[+nas]
[−cont]

}
The remaining subfactors in the hypothesis space

in Figure 17 are exactly the ungrammatical 2-
factors as Figure 10. While [+N][-V,-C] is the most
general description of ungrammatical 2-factors in
Zoque, [+N][-V,-C] is the most general description
of the environment where a sound becomes voiced.
Since ungrammaticality is upward entailing (Figure
9), it makes sense that being an environment where
voicing takes place is also upward entailing (Fig-
ure 11); a [-V,-C] segment becomes voiced when
it is preceded by a nasal as a means of repairing
the fact that [+N][-V,-C] is an ungrammatical sur-

face form. The learning approach presented here
therefore makes the relationship between surface
constraints and phonological maps concrete.

5 Discussion and Conclusion

This paper starts with length-preserving and order-
preserving ISL functions in order to show how
partially-ordered hypothesis spaces over model-
theoretic representations can be used to learn
phonological maps as logical transducers. Chan-
dlee and Jardine (2021, pg.3) state the appeal of the
BMRS formalism for phonology as follows: “this
formalism has a well-understood complexity bound
that corresponds to previous results in the study of
computational phonology, but it also provides a
way to implement phonological substance”. The
approach presented here is extends this advantage
of BMRS to learning; because BMRS can be used
to represent phonological generalizations, we can
adapt previous work on model-theoretic learning to
show that BMRS can also be used learn phonolog-
ical generalization. This latter point is ultimately
the broader contribution of this work.

This paper assumed that there is a trivial one-to-
one correspondence between input and output ele-
ments, where the segment at index x in the output
model is the surface form of the segment at index
x in the input model. This assumptions rules out
deletion, epenthesis, and metathesis maps which



are also ISL (Chandlee, 2014). An interesting ex-
tension of this work would be to develop a learn-
ing procedure for input-output index correspon-
dences. Consider for example a simple deletion
map a → λ/b b, where an ‘a’ is deleted when-
ever it is between two ‘b’s. Figure 18 presents the
input-output correspondences for the string trans-
formation ababa 7→ abba.

a b a b a

a b b a

Figure 18: Input-output correspondences

Recent work from Li (2025) uses BUFIA to learn
tonotactic patterns, where the structures in the hy-
pothesis space encode autosegmental representa-
tions. An interesting question to pursue further is
whether a similar hypothesis space can be used to
represent input-output correspondences. Doing so
would amount to learning the environments where
features undergo change and the input-output cor-
respondence between segments in the underlying
and surface forms simultaneously.

Adding output structures to the hypothesis space
would also make it possible to learn a larger class
of transductions. Theorem 7 stated that every non-
recursive BMRS programs can be expressed as
an equivalent normal form program. However,
it seems intuitive that this result should extend
to programs in general because every map can
be uniquely identified in terms of environments
where features undergo change; this is afterall how
SPE-style rewrite rules express a function. How-
ever, such a result requires reasoning about recur-
sion in BMRS, which uses a fixed point semantics
(Bhaskar et al., 2020), and is outside the scope of
this paper. A valuable result for future work is an
extension of Theorem 7 to more general programs.

Ultimately, the purpose of this paper was to
present a starting point for a model-theoretic ap-
proach to learning phonological maps, and the mer-
its of such an approach. The ideas and procedure
presented here can be extended to different rep-
resentations and classes of functions. In order to
extend this work to more complex representations,
the next step for this research is an implementation
of the learning procedure presented here. Doing
so would also make it possible to obtain empirical
results.
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A Appendix

Proof of Theorem 7. Let {P ′
σ}σ∈Σ be a non-

recursive BMRS program over the input signa-
ture Σ = {Pσ, p, s}σ∈Σ. Fix σ ∈ Σ, and let
atoms(P ′

σ(x)) be the set of Boolean expressions
in atoms(Σ) which appear in the equation P ′

σ(x).
We can then construct a truth table with columns
C = atoms(P ′

σ(x))∪{P ′
σ(x)}. For every α(x) ∈

C and row r, we say r |= α(x) if and only if α(x)
evaluates to ⊤ in row r of the table. For every
row r, we define a conjunction consisting of all the
information contained in row r as follows

Ψr(x) :=
∧

α(x)∈Atoms(P ′
σ(x))

{
α(x) if r |= α(x)

¬α(x) otherwise

We show that there is a normal form expression P ∗
σ

such that P ′
σ is logically equivalent to P ∗

σ .
Case 1. Consider first the case where Pσ(x) ̸∈ C.
In other words, the equation P ′

σ(x) is not defined
in terms of the input predicate Pσ(x). Set ψσ(x)
and ϕσ(x) as follows.

ϕσ(x) :=
∨

{r:r ̸|=P ′
σ(x)}

Ψr(x)

ψσ(x) :=
∨

{r:r|=P ′
σ(x)}

Ψr(x)

Let P ∗
σ (x) = if Pσ(x) then ¬ϕσ(x) else ψσ(x).

By construction, ϕσ(x) = ¬ψσ(x), and therefore
P ∗
σ (x) ≡ ψσ(x). Because ψσ(x) exhaustively con-

tains all the possible situations in which P ′
σ(x) eval-

uates to ⊤, ψσ(x) ≡ P ′
σ(x). Thus, P ∗

σ is equivalent
to P ′

σ.
Case 2. Pσ(x) ∈ atoms(P ′

σ(x)). Define ϕσ(x)
and ψσ(x) as follows.

ϕσ(x) :=
∨

{r:r|=Pσ(x), r ̸|=P ′
σ(x)}

Ψr(x) (1)

ψσ(x) :=
∨

{r:r ̸|=Pσ(x), r|=P ′
σ(x)}

Ψr(x) (2)

Set P ∗(x) = if Pσ(x) then ¬ϕσ(x) else ψσ(x).
We show that P ∗

σ (x) evaluates to ⊤ iff P ′
σ(x) eval-

uates to ⊤. Consider first the case where Pσ(x)
evaluates to ⊤. Then P ∗

σ (x) evaluates to ⊤ iff
ϕσ(x) evaluates to ⊥. By the definition in (1), this
means Ψr evaluates to ⊥ for every row r such that
r ̸|= P ′

σ(x). In other words, none of the conditions
under which P ′

σ(x) can evaluate to ⊥ are satisfied.

Thus, ϕσ(x) evaluates to ⊥ iff P ′
σ(x) evaluates to

⊤. Similarly in the case where Pσ(x) evaluates
to ⊥, P ∗

σ (x) evaluates to ⊤ iff ψσ(x) evaluates to
⊤. By the definition in (2), ψσ(x) evaluates to ⊤
iff Ψr(x) evaluates to ⊤ for some row r. In other
words, one of the conditions under which P ′

σ(x)
can evaluate to ⊤ is satisfied. Thus, ψσ(x) evalu-
ates to ⊤ iff P ′

σ(x) evaluates to ⊤.
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